Full text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Robotics and automation have been a growing area within K–12 educational institutions for the past decade. Across secondary educational institutions, students are introduced to robotics in classes, after-school clubs, and competition leagues through various educational platforms, vendors, and kits. Robotics was initially implemented in schools to help drive more interest in STEM through hands-on application of mechanical, electrical, structural, and computer engineering concepts. Recently, the trend of K–12 robotics has become very niche, focusing more on mobile robotics or robotics competitions. Because of this trend, students have limited exposure to emerging technological advances, such as those found in Industry 4.0. Exciting technological areas, such as digital twins, are not covered in curricula, and this lack of exposure negatively influences the direction of student interest in the “T” and “E” of STEM, with many students never pursuing computer science, technology, or robotics in higher education. The primary goal of this research is to provide a methodology to expose secondary students to Industry 4.0 technologies by leveraging accessible technologies, such as Unity and the Robot Operating System (ROS), to develop a low-cost, high-fidelity digital twin of a pick-and-place robot in a smart warehouse operation. This digital twin prototype will help students to learn about Industry 4.0 trends, such as next-generation automation systems, digital twins, digital manufacturing, intelligent automation, and additive manufacturing, using ROS–Unity integration and hardware accessible to secondary schools to simulate a pick-and-place robotic application. By harnessing the accessibility of Unity and ROS to create a low-cost digital twin prototype for a secondary school, this research has a secondary goal of improving the pipeline of students interested in pursuing STEM-related learning in higher education, thereby ensuring a future STEM workforce that can research, design, develop, operate, and maintain the systems and technologies of Industry 4.0.

Details

Title
Low-Cost Digital Twin Approach and Tools to Support Industry and Academia: A Case Study Connecting High-Schools with High Degree Education
Author
Acker, James  VIAFID ORCID Logo  ; Rogers, Ishmael; Guerra-Zubiaga, David  VIAFID ORCID Logo  ; Muhammad Hassan Tanveer  VIAFID ORCID Logo  ; Amir Ali Amiri Moghadam
First page
860
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
20751702
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2869409632
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.