Full text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Social networks have captured the attention of many people worldwide. However, these services have also attracted a considerable number of malicious users whose aim is to compromise the digital assets of other users by using messages as an attack vector to execute different types of cyberattacks against them. This work presents an approach based on natural language processing tools and a convolutional neural network architecture to detect and classify four types of cyberattacks in social network messages, including malware, phishing, spam, and even one whose aim is to deceive a user into spreading malicious messages to other users, which, in this work, is identified as a bot attack. One notable feature of this work is that it analyzes textual content without depending on any characteristics from a specific social network, making its analysis independent of particular data sources. Finally, this work was tested on real data, demonstrating its results in two stages. The first stage detected the existence of any of the four types of cyberattacks within the message, achieving an accuracy value of 0.91. After detecting a message as a cyberattack, the next stage was to classify it as one of the four types of cyberattack, achieving an accuracy value of 0.82.

Details

Title
Cyberattack Detection in Social Network Messages Based on Convolutional Neural Networks and NLP Techniques
Author
Coyac-Torres, Jorge E  VIAFID ORCID Logo  ; Sidorov, Grigori  VIAFID ORCID Logo  ; Aguirre-Anaya, Eleazar  VIAFID ORCID Logo  ; Hernández-Oregón, Gerardo  VIAFID ORCID Logo 
First page
1132
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
25044990
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2869416520
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.