Full text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Most of the world’s annual production of mannitol is by chemical means, but, due to increasing demand for natural sweeteners, alternative production methods are being sought. The aim of the study was to screen Yarrowia lipolytica yeast strains and select culture conditions for the efficient and selective biosynthesis of mannitol from glycerol. From 21 strains examined in the shake-flask culture for mannitol biosynthesis from glycerol (100 g/L), three strains were selected—S2, S3, and S4—and further evaluated in batch bioreactor cultures with technical and raw glycerol (150 g/L). The best production parameters were observed for strain S3, which additionally was found to be the most resistant to NaCl concentration. Next, strain S3 was examined in batch culture with regard to the initial glycerol concentration (from 50 to 250 g/L). It was found that the substrate concentrations of 50 and 75 g/L resulted in the highest mannitol selectivity, about 70%. The fed-batch culture system proposed in this paper (performed in two variants in which glycerol was dosed in four portions of about 50 or 75 g/L) resulted in increased mannitol production, up to 78.5 g/L.

Details

Title
Sugar Alcohol Sweetener Production by Yarrowia lipolytica Grown in Media Containing Glycerol
Author
Juszczyk, Piotr  VIAFID ORCID Logo  ; Rywińska, Anita  VIAFID ORCID Logo  ; Kosicka, Julia; Tomaszewska-Hetman, Ludwika  VIAFID ORCID Logo  ; Rymowicz, Waldemar  VIAFID ORCID Logo 
First page
6594
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
14203049
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2869545326
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.