Full text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Regarding the dynamic development of 3D printing technology, as well as its application in a growing part of industries, i.e., in the automotive industry, construction industry, medical industry, etc., there is a notable opportunity for its application in producing dental implants, which presents a promising alternative to traditional implant manufacturing methods. The medical industry is very restrictive regarding the applied materials, and it is necessary to use materials that exhibit very good mechanical and thermal parameters, show clinical indifference and biocompatibility, are non-allergenic and non-cancerous, and are likely to sterilize. Such materials are poly(aryl-ether-ketone)s (PAEK)s, mainly poly(ether-ether-ketone) (PEEK) and poly(ether-ketone-ketone) (PEKK), that are found to be high-performance polymers and can be defined as materials that retain their functionality even in extreme conditions. In the present paper, two types of PEEKs and PEKK were compared regarding their structural, mechanical, and thermal properties along with the biological activity toward selected strains. The tested samples were obtained with Fused Deposition Modeling (FDM) technology. The PEKK, after heat treatment, exhibits the most promising mechanical properties as well as less bacterial adhesion on its surface when compared to both PEEKs. Consequently, among the evaluated materials, PEKK after heat treatment stands out as the optimal selection for a dental prosthesis.

Details

Title
The Mechanical, Thermal, and Biological Properties of Materials Intended for Dental Implants: A Comparison of Three Types of Poly(aryl-ether-ketones) (PEEK and PEKK)
Author
Paszkiewicz, Sandra 1   VIAFID ORCID Logo  ; Lesiak, Paweł 2 ; Walkowiak, Konrad 1   VIAFID ORCID Logo  ; Irska, Izabela 1   VIAFID ORCID Logo  ; Miądlicki, Karol 1   VIAFID ORCID Logo  ; Królikowski, Marcin 1 ; Piesowicz, Elżbieta 1   VIAFID ORCID Logo  ; Figiel, Paweł 1 

 Faculty of Mechanical Engineering and Mechatronics, West Pomeranian University of Technology, 70-310 Szczecin, Poland; [email protected] (K.W.); [email protected] (I.I.); 
 Tele-Fonika Kable S.A., Factory in Bydgoszcz, 85-957 Bydgoszcz, Poland; [email protected] 
First page
3706
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
20734360
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2869551122
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.