Full text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The development of sensor networks allows for easier time series data acquisition in industrial production. Due to the redundancy and rapidity of industrial time series data, accurate anomaly detection is a complex and important problem for the efficient production of the textile process. This paper proposed a semantic inference method for anomaly detection by constructing the formal specifications of anomaly data, which can effectively detect exceptions in process industrial operations. Furthermore, our method provides a semantic interpretation of exception data. Hybrid signal temporal logic (HSTL) was proposed to improve the insufficient expressive ability of signal temporal logic (STL) systems. The epistemic formal specifications of fault offline were determined, and a data-driven semantic anomaly detector (SeAD) was constructed, which can be used for online anomaly detection, helping people understand the causes and effects of anomalies. Our proposed method was applied to time-series data collected from a representative textile plant in Zhejiang Province, China. Comparative experimental results demonstrated the feasibility of the proposed method.

Details

Title
Semantic Hybrid Signal Temporal Logic Learning-Based Data-Driven Anomaly Detection in the Textile Process
Author
Huo, Xu; Kuangrong Hao
First page
2804
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
22279717
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2869554756
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.