Full Text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Infrared and visible image fusion is a solution that generates an information-rich individual image with different modal information by fusing images obtained from various sensors. Salient detection can better emphasize the targets of concern. We propose a residual Swin Transformer fusion network based on saliency detection, termed SDRSwin, aiming to highlight the salient thermal targets in the infrared image while maintaining the texture details in the visible image. The SDRSwin network is trained with a two-stage training approach. In the first stage, we train an encoder–decoder network based on residual Swin Transformers to achieve powerful feature extraction and reconstruction capabilities. In the second stage, we develop a novel salient loss function to guide the network to fuse the salient targets in the infrared image and the background detail regions in the visible image. The extensive results indicate that our method has abundant texture details with clear bright infrared targets and achieves a better performance than the twenty-one state-of-the-art methods in both subjective and objective evaluation.

Details

Title
SDRSwin: A Residual Swin Transformer Network with Saliency Detection for Infrared and Visible Image Fusion
Author
Li, Shengshi 1 ; Wang, Guanjun 2   VIAFID ORCID Logo  ; Zhang, Hui 3 ; Zou, Yonghua 2 

 School of Information and Communication Engineering, Hainan University, Haikou 570228, China 
 School of Information and Communication Engineering, Hainan University, Haikou 570228, China; State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China 
 Key Laboratory of Genetics and Germplasm Innovation of Tropical Special Forest Trees and Ornamental Plants (Hainan University), Ministry of Education, School of Forestry, Hainan University, Haikou 570228, China 
First page
4467
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
20724292
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2869571653
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.