Full text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The Chinese-French Oceanography SATellite (CFOSAT) jointly developed by the Chinese National Space Agency (CNSA) and the Centre National d’Etudes Spatiales (CNES) of France carries a wave spectrometer (Surface Waves Investigation and Monitoring, SWIM). SWIM has one nadir and five off-nadir beams to measure ocean surface waves. These near-nadir beams range from 0° to 10° at an interval of 2°. In this work, we investigated the performance of wave parameters derived from wave spectra measured by SWIM at off-nadir beams during the period 2020 to December 2022, e.g., incidence angles of 6°, 8° and 10°, which were collocated with the wave simulated by Simulating Waves Nearshore (SWAN). The validation of SWAN-simulated significant wave heights (SWHs) against National Data Buoy Center (NDBC) buoys of National Oceanic and Atmospheric Administration (NOAA) exhibited a 0.42 m root mean square error (RMSE) in the SWH. Our results revealed a RMSE of 1.02 m for the SWIM-measured SWH in the East Pacific Ocean compared with the SWH simulated by SWAN, as well as a 0.79 correlation coefficient (Cor) and a 1.17 squared error (Err) for the wave spectrum at an incidence angle of 10°, which are better than those (i.e., the RMSEs were > 1.1 m with Cors < 0.76 and Errs > 1.2) achieved at other incidence angles of SWH up to 14 m. This analysis indicates that the SWIM product is a relevant resource for wave monitoring over global seas. The collocated wave retrievals for more than 300 cases from Gaofen-3 (GF-3) synthetic aperture radar (SAR) images in China Seas were also used to verify the accuracy of SWIM-measured wave spectra. The energy of the SWIM-measured wave spectra represented by SWH was found to decrease with an increasing incidence angle in a case study. Moreover, the SWIM-measured wave spectra were most consistent with the SAR-derived wave spectra at an incidence angle of 10°, yielding a 0.77 Cor and 1.98 Err between SAR-derived and SWIM wave spectra under regular sea state conditions (SWH < 2 m). The error analysis indicates that the difference in SWH between SWIM at an incidence angle of 10° and SWAN has an increasing tendency with the growth in sea surface wind and sea state and it stabilizes to be 0.6 m at SWH > 4 m; however, the current and sea level have less influence on the uncertainties of the SWIM product.

Details

Title
Validation of Surface Waves Investigation and Monitoring Data against Simulation by Simulating Waves Nearshore and Wave Retrieval from Gaofen-3 Synthetic Aperture Radar Image
Author
Mengyu Hao 1 ; Shao, Weizeng 1   VIAFID ORCID Logo  ; Shi, Shaohua 2 ; Liu, Xing 3 ; Hu, Yuyi 1 ; Zuo, Juncheng 1 

 College of Marine Sciences, Shanghai Ocean University, Shanghai 201306, China; [email protected] (M.H.); [email protected] (Y.H.); [email protected] (J.Z.) 
 East China Sea Survey Center, Ministry of Natural Resources, Shanghai 200137, China; [email protected] 
 Research Center for Monitoring and Environmental Sciences, Taihu Basin and East China Sea Ecological Environment Supervision and Administration Authority, Ministry of Ecology and Environment, Shanghai 200125, China; [email protected] 
First page
4402
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
20724292
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2869579328
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.