Full text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Semantic segmentation of remote sensing images has been widely used in environmental protection, geological disaster discovery, and natural resource assessment. With the rapid development of deep learning, convolutional neural networks (CNNs) have dominated semantic segmentation, relying on their powerful local information extraction capabilities. Due to the locality of convolution operation, it can be challenging to obtain global context information directly. However, Transformer has excellent potential in global information modeling. This paper proposes a new hybrid convolutional and Transformer semantic segmentation model called CTFuse, which uses a multi-scale convolutional attention module in the convolutional part. CTFuse is a serial structure composed of a CNN and a Transformer. It first uses convolution to extract small-size target information and then uses Transformer to embed large-size ground target information. Subsequently, we propose a spatial and channel attention module in convolution to enhance the representation ability for global information and local features. In addition, we also propose a spatial and channel attention module in Transformer to improve the ability to capture detailed information. Finally, compared to other models used in the experiments, our CTFuse achieves state-of-the-art results on the International Society of Photogrammetry and Remote Sensing (ISPRS) Vaihingen and ISPRS Potsdam datasets.

Details

Title
CNN and Transformer Fusion for Remote Sensing Image Semantic Segmentation
Author
Chen, Xin  VIAFID ORCID Logo  ; Li, Dongfen  VIAFID ORCID Logo  ; Liu, Mingzhe  VIAFID ORCID Logo  ; Jia, Jiaru
First page
4455
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
20724292
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2869612219
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.