Full text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Using Unmanned Aerial Vehicles (UAVs), commonly referred to as “drones”, as a supplementary mode for last-mile deliveries has been a research focus for some years now. Motivation lies in the reduced dependency on Conventional Vehicles (CVs) and fossil fuels and in serving remote areas and underprivileged populations. We are building a flexible, modular framework for integrated CV-UAV parcel delivery operations planning that is responsive to infrastructure and demand and offers an open and practical tool for future adaptations. The entire model and solution methodology are practical tools for decision making and strategic planning, with novelties such as the variable Launch Site types for Launch and Recovery Operations (LAROs), the tailored Assignment and Routing Optimization nested GA, the consideration of airspace restrictions of any shape and size, the inclusion of GIS tools in the process, the modularity of the platform, and most importantly, the inclusion of all the above in a single, comprehensive, and holistic approach. Because of the need for safe UAV deployment sites and the high presence of restricted airspace zones in urban environments, the intended field of application is assumed to be the delivery of small packages in rural and under-connected areas, the execution of inter-city deliveries, and the expansion of a city’s original service range. A single CV is equipped onboard with UAVs, while special locations, such as Remote Depots (RDs) with UAVs and Virtual Hubs (VHs) for UAV deployment facilitation, are introduced. The framework considers the presence of Restricted Zones (RZs) for UAV flights. Part of the methodology is implemented in a GIS environment, taking advantage of modern tools for spatial analysis and optimal path planning. We have designed a tailored nested GA method for solving the occurring mode assignment and vehicle routing optimization problems and have implemented our workflow on a devised case study with benchmark characteristics. Our model responds well to unfavorable network types and demand locations, while the presence of RZs notably affects the expected solution and should be considered in the decision-making process.

Details

Title
Planning Integrated Unmanned Aerial Vehicle and Conventional Vehicle Delivery Operations under Restricted Airspace: A Mixed Nested Genetic Algorithm and Geographic Information System-Assisted Optimization Approach
Author
Kouretas, Konstantinos  VIAFID ORCID Logo  ; Kepaptsoglou, Konstantinos
First page
1060
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
26248921
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2869655262
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.