It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
The field of dentistry is consistently innovating with the introduction of novel hybrid and polymer materials for computer-aided design and manufacturing (CAD/CAM). It is noteworthy that the temperature within the oral cavity has a significant impact on the strength of new biomaterials utilized for CAD/CAM fabrication of fixed partial dentures (FPDs). Studies have demonstrated that alterations in intraoral temperature may significantly affect the longevity and durability of dental restorative materials. This study aimed to evaluate the flexural strength, flexural modulus, and effect of thermal aging on CAD/CAM restorative materials. Five CAD/CAM materials were investigated: nano-ceramic-hybrid (GR), polymer-infiltrated-ceramic-network (VE), polyether-ether-ketone (PK), fiberglass-reinforced epoxy-resin (CT), and Feldspar Ceramic (VB). A total of 100 bar-shaped specimens were prepared (N = 20). Each group was subdivided into thermocycling (TC) and no-thermocycling (NTC) subgroups (n = 10). All the specimens underwent a 3-point bending test. The mean flexural strengths and moduli were statistically analyzed using paired t-test, analysis of variance (ANOVA), and Bonferroni pair-wise comparison (p < 0.05). Significant differences were observed in the flexural strength (FS) and modulus (E) between the materials (p < 0.001). GR had the highest FS among tested hybrid materials. NTC CT had the highest FS (924.88 ± 120.1 MPa), followed by GR (385.13 ± 90.73 MPa), then PK (309.56 ± 46.84 MPa). The FS of brittle ceramic VB was the lowest (p < 0.001), but similar to that of PICN VE. Only resin-containing VE and CT significantly decreased in E after thermocycling (p < 0.01, p = 0.013), showing the softening effect of thermocycling on their resin matrix. It can be concluded that new hybrid materials (GR) had higher flexural strength than feldspar ceramic and other resin/polymeric CAD/CAM materials. Polymeric PEEK and GR hybrid materials were resistant to significant deleterious effects of TC. Therefore, they would be appropriate for situations with a higher stress load.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer