It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
A semi-distributed rainfall-runoff Approximate Redistributive Balance (ARB) model is currently in development as a tool for the assessment and analysis of the water management balance at the level of micro-basins on the territory of Slovakia. For the winter season, it is necessary to supplement the model with a sub-model for calculating the snow water equivalent (SWE) with a comparatively low amount of the input data necessary. Since SWE models generally operate in a daily time step, a new sub-model was developed and tested in monthly and weekly time steps in 30 meteorological stations in the north of Slovakia. When compared in a weekly time step with the snow sub-model of the HBV rainfall-runoff model and when the impact of switching from a monthly to weekly time step on the quality of the runoff simulation was evaluated, the results showed that the snow sub-model does react to sudden snowmelt better when compared to the modified version of the HBV snow sub-model used. Using a weekly time step for the snow sub-model in a monthly ARB model runoff simulation showed an increase of accuracy (NSE change from 0.89 to 0.92) in one case, while maintaining the same level of accuracy in the second one.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 Dept. of Land and Water Resources Management, Faculty of Civil Engineering, Slovak University of Technology in Bratislava, Slovakia