It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Background: Since the start of the COVID-19 pandemic, many variables have contributed to surges in cases such as the presence of variants, vaccination status, and comorbid medical conditions. However, other factors can be considered including temperature, precipitation, and periods in large congregations. The spike in SARS-CoV-2 infections during the winter has made it seem plausible that transmission may be affected by meteorological factors. A study by Birukov et al demonstrated that a 1°C increase in temperature was associated with a 3.08% reduction in daily new cases and a 1.19% decrease in daily new deaths. We propose that SARS-CoV-2 transmission will decline more rapidly when either precipitation or temperature is higher; thus, in warmer regions with less precipitation daily cases, hospitalizations and deaths will be lower. Methods: This is a retrospective study of statewide data in Hartford County, Connecticut, collected from May 2020 to June 2022 assessing percent positivity reported in daily case count, hospitalizations for COVID-19, and deaths from COVID-19 collected from the Connecticut Department of Public Health COVID-19 database. Information on weather conditions, including temperature and precipitation, were collected from the National Weather Service pertaining to Hartford County. Trends in variables related to patient outcomes were compared to weather conditions within the county of Hartford. Moreover, certain periods within the various seasons that typically involve large gatherings and public holidays (eg, New Year’s Day, Memorial Day, 4th of July, Labor Day, Thanksgiving, and Christmas Day) were further analyzed. Results: There appears to be an inverse correlation coefficient of −0.422, between confirmed daily cases and mean temperature in Hartford County, indicating that as temperature increases, confirmed cases decrease. This phenomenon is also observed with confirmed daily deaths and mean temperature, with a correlation coefficient of −0.463. Moreover, there is an even more significant relationship between hospitalization cases and mean temperature, with a correlation coefficient of −0.667. Furthermore, the year-end holidays (Christmas Day and New Year’s Day) were associated with a significant spike in confirmed daily cases, hospitalizations, and deaths.
However, the relationship between confirmed daily cases, hospitalized cases, and confirmed deaths against mean precipitation in Hartford County demonstrated no significant relationship, reporting correlation coefficients of −0.042, −0.044, and −0.044, respectively. Conclusions: Our available COVID-19 and weather data show that temperature is inversely correlated with daily cases, hospitalizations, and deaths. However, with regard to precipitation, there was no discernable relationship between the variables.
Disclosures: None
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer