Full text

Turn on search term navigation

© 2023 Hsieh et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The rice GA biosynthetic gene OsGA3ox1 has been proposed to regulate pollen development through the gametophytic manner, but cellular characterization of its mutant pollen is lacking. In this study, three heterozygotic biallelic variants, “-3/-19”, “-3/-2” and “-3/-10”, each containing one null and one 3bp-deletion allele, were obtained by the CRISPR/Cas9 technique for the functional study of OsGA3ox1. The three homozygotes, “-19/-19”, “-2/-2” and “-10/-10”, derived from heterozygotic variants, did not affect the development of most vegetative and floral organs but showed a significant reduction in seed-setting rate and in pollen viability. Anatomic characterizations of these mutated osga3ox1 pollens revealed defects in starch granule accumulation and pollen wall development. Additional molecular characterization suggests that abnormal pollen development in the osga3ox1 mutants might be linked to the regulation of transcription factors OsGAMYB, OsTDR and OsbHLH142 during late pollen development. In brief, the rice GA3ox1 is a crucial gene that modulates pollen starch granule accumulation and pollen wall development at the gametophytic phase.

Details

Title
Rice GA3ox1 modulates pollen starch granule accumulation and pollen wall development
Author
Kun-Ting Hsieh; Wu, Chi-Chih  VIAFID ORCID Logo  ; Shih-Jie, Lee; Yu-Heng, Chen; Shiau-Yu Shiue; Yi-Chun, Liao; Su-Hui, Liu; I.-Wen Wang; Ching-Shan Tseng; Li, Wen-Hsiung; Chang-Sheng, Wang; Chen, Liang-Jwu  VIAFID ORCID Logo 
First page
e0292400
Section
Research Article
Publication year
2023
Publication date
Oct 2023
Publisher
Public Library of Science
e-ISSN
19326203
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2874789177
Copyright
© 2023 Hsieh et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.