It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Multi-segmental lumbar degenerative disease, including intersegmental disc degeneration, is found in clinical practice. Controversy still exists regarding the treatment for cross-segment degeneration. Oblique Lateral Interbody Fusion (OLIF) with several internal fixations was used to treat cross-segment lumbar degenerative disease. A whole lumbar spine model was extracted from CT images of the whole lumbar spine of patients with lumbar degeneration. The L2-3 and L4-5 intervertebral spaces were fused with OLIF using modeling software, the Pedicle screws were performed on L2-3 and L4-5, and different internal fixations were performed on L3-4 in Finite Element (FE) software. Among the six 10 Nm moments of different directions, the L3-4 no surgery (NS) group had the relatively largest Range of Motion (ROM) in the whole lumbar spine, while the L2-5 Long segmental fixation (LSF)group had the smallest ROM and the other groups had similar ROM. The ROM in the L1-2 and L5-S1 was relatively close in the six group models, and the articular cartilage stress and disc stress on the L1-2 and L5-S1 were relatively close. In contrast, the L3-4 ROM differed relatively greatly, with the LSF ROM the smallest and the NS ROM the largest, and the L3-4 Coflex (Coflex) group more active than the L3-4 Bacfuse (Bacfuse) group and the L3-4 translaminar facet screw fixation (TFSF) group. The stress on the articular cartilage and disc at L3-4 was relatively greater in the NS disc and articular cartilage, and greater in the Coflex group than in the Bacfuse and TFSF groups, with the greatest stress on the internal fixation in the TFSF group, followed by the Coflex group, and relatively similar stress in the Bacfuse, LSF, and NS groups. In the TFSF group, the stress on the internal fixation was greater than the yield strength among different directional moments of 10 Nm, which means it is unsuitable to be an internal fixation. The LSF group had the greatest overall ROM, which may lead to postoperative low back discomfort. The NS group has the greatest overall ROM, but its increased stress on the L3-4 disc and articular cartilage may lead to accelerated degeneration of the L3-4 disc and articular cartilage. The Coflex and Bacfuse groups had a reduced L3-4 ROM but a greater stress on disc compared to the LSF group, which may lead to disc degeneration in the long term. However, their stress on the articular cartilage was relatively low. Coflex and Bacfuse can still be considered better surgical options.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 Fuzhou Second Hospital, Department of Orthopedics, Fuzhou, China (GRID:grid.490567.9); Affiliated Hospital of Chengde Medical College, Department of Spine Surgery, Chengde, China (GRID:grid.413368.b)
2 Affiliated Hospital of Chengde Medical College, Department of Spine Surgery, Chengde, China (GRID:grid.413368.b)
3 Fuzhou Second Hospital, Department of Orthopedics, Fuzhou, China (GRID:grid.490567.9)
4 Lanzhou University of Technology, School of Civil Engineering, Lanzhou, China (GRID:grid.411291.e) (ISNI:0000 0000 9431 4158)
5 Fu Zhou University, Department of Foreign Languages, Fuzhou, China (GRID:grid.411604.6) (ISNI:0000 0001 0130 6528)
6 Chungnam National University Hospital, Department of Orthopedics, Daejeon, Republic of Korea (GRID:grid.411665.1) (ISNI:0000 0004 0647 2279)