Full text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Turbine blades are crucial components exposed to harsh conditions, such as high temperatures, high pressures, and high rotational speeds. It is of great significance to accurately predict the life of blades for reducing maintenance cost and improving the reliability of gas turbine systems. A rapid and accurate blade life assessment method holds significant importance in the maintenance plan of gas turbine engines. In this paper, a novel on-line remaining useful life (RUL) prediction method for high-temperature blades is proposed based on 3D reconstruction technology and data-driven surrogate mode. Firstly, the 3D reconstruction technology was employed to establish the geometric model of real turbine blades, and the fluid–thermal–solid analysis under actual operational conditions was carried out in ANSYS software. Six checkpoints were selected to estimate the RUL according to the stress–strain distribution of the blade surface. The maximum equivalent stress was 1481.51 MPa and the highest temperature was 1393.42 K. Moreover, the fatigue-creep lifetime was calculated according to the parameters of the selected checkpoints. The RUL error between the simulation model and commercial software (Control and Engine Health Management (CEHM)) was less than 0.986%. Secondly, different data-driven surrogate models (BP, DNN, and LSTM algorithms) were developed according to the results from numerical simulation. The maximum relative errors of BP, DNN, and LSTM models were 0.030%, 0.019%, and 0.014%. LSTM demonstrated the best performance in predicting the RUL of turbine blades with time-series characteristics. Finally, the LSTM model was utilized for predicting the RUL within a gas turbine real operational process that involved five start–stop cycles.

Details

Title
Remaining Useful Life Prediction Method for High Temperature Blades of Gas Turbines Based on 3D Reconstruction and Machine Learning Techniques
Author
Wang, Xiao 1 ; Chen, Yifan 2   VIAFID ORCID Logo  ; Zhang, Huisheng 2   VIAFID ORCID Logo  ; Shen, Denghai 3 

 School of Mechanical Engineering, Xinjiang University, Urumqi 830047, China; [email protected]; PipeChina West Pipeline Company Limited, Urumqi 830012, China 
 School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China; [email protected] 
 PipeChina West Pipeline Company Limited, Urumqi 830012, China 
First page
11079
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
20763417
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2876427421
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.