Full text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Relationship extraction is a crucial step in the construction of a knowledge graph. In this research, the grid field entity relationship extraction was performed via a labeling approach that used span representation. The subject entity and object entity were used as training instances to bolster the linkage between them. The embedding layer of the RoBERTa pre-training model included word embedding, position embedding, and paragraph embedding information. In addition, semantic dependency was introduced to establish an effective linkage between different entities. To facilitate the effective linkage, an additional lexically labeled embedment was introduced to empower the model to acquire more profound semantic insights. After obtaining the embedding layer, the RoBERTa model was used for multi-task learning of entities and relations. The multi-task information was then fused using the parameter hard sharing mechanism. Finally, after the layer was fully connected, the predicted entity relations were obtained. The approach was tested on a grid field dataset created for this study. The obtained results demonstrated that the proposed model has high performance.

Details

Title
A Combined Semantic Dependency and Lexical Embedding RoBERTa Model for Grid Field Relational Extraction
Author
Meng, Qi 1 ; Zhang, Xixiang 1 ; Dong, Yun 1 ; Chen, Yan 2   VIAFID ORCID Logo  ; Lin, Dezhao 3 

 Guangxi Power Grid Co., Ltd., Nanning 530022, China 
 School of Computer and Electronic Information, Guangxi University, Nanning 530004, China; Guangxi Intelligent Digital Services Research Center of Engineering Technology, Nanning 530004, China 
 School of Computer and Electronic Information, Guangxi University, Nanning 530004, China 
First page
11074
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
20763417
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2876452512
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.