Full text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Currently, several façade systems exist to enable sustainable building design. The biggest challenges for façade designers are to identify new technology and effective, sustainable systems that enable high structural and sustainable performance while producing a good aesthetic. Therefore, this paper aims to review the performance of existing façade systems for sustainable building designs and their limitations. Among modern façade systems, Double Skin Façades (DSF) show promise for energy efficiency, indoor air quality, and aesthetics. However, they face challenges like sound transmission between floors, higher initial costs, and outer skin vibrations. Furthermore, adaptive façades gained popularity for their active methods of achieving energy performance and comfort benefits but encountered complexities in design and construction, demanding codes and standards. Green wall systems enhance air quality and aesthetics, while photovoltaic façade systems reduce electricity costs, but both systems face higher initial costs and maintenance challenges. The review indicates that to produce a sustainable building design, architects, engineers, and builders must consider a sustainable façade system that enables high energy efficiency, less cost, better occupant comfort, and fewer environmental impacts.

Details

Title
Study of Technological Advancement and Challenges of Façade System for Sustainable Building: Current Design Practice
Author
Dushan Fernando 1 ; Navaratnam, Satheeskumar 2   VIAFID ORCID Logo  ; Pathmanathan Rajeev 1   VIAFID ORCID Logo  ; Sanjayan, Jay 1   VIAFID ORCID Logo 

 Department of Civil & Construction Engineering, School of Engineering, Swinburne University of Technology, Melbourne, VIC 3122, Australia 
 School of Engineering, RMIT University, Melbourne, VIC 3001, Australia 
First page
14319
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
20711050
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2876708670
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.