Full text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Tenascin-C (TNC) is a complex glycoprotein of the extracellular matrix (ECM) involved in a plethora of (patho-)physiological processes, such as oncogenesis and inflammation. Since chemokines play an essential role in both disease processes, we have investigated here the binding of TNC to some of the key chemokines, namely CCL2, CCL26, CXCL8, CXCL10, and CXCL12. Thereby, a differential chemokine-TNC binding pattern was observed, with CCL26 exhibiting the highest and CCL2 the lowest affinity for TNC. Heparan sulfate (HS), another member of the ECM, proved to be a similarly high-affinity ligand of TNC, with a Kd value of 730 nM. Chemokines use glycosa-minoglycans such as HS as co-receptors to induce immune cell migration. Therefore, we assumed an influence of TNC on immune cell chemotaxis due to co-localization within the ECM. CCL26- and CCL2-induced mobilization experiments of eosinophils and monocytes, respectively, were thus performed in the presence and the absence of TNC. Pre-incubation of the immune cells with TNC resulted in a 3.5-fold increase of CCL26-induced eosinophil chemotaxis, whereas a 1.3-fold de-crease in chemotaxis was observed when monocytes were pre-incubated with CCL2. As both chemokines have similar HS binding but different TNC binding affinities, we speculate that TNC acts as an attenuator in monocyte and as an amplifier in eosinophil mobilization by impeding CCL2 from binding to HS on the one hand, and by reinforcing CCL26 to bind to HS on the other hand.

Details

Title
Chemokine Binding to Tenascin-C Influences Chemokine-Induced Immune Cell Migration
Author
Domaingo, Alissa 1 ; Jokesch, Philipp 1 ; Schweiger, Alexandra 1 ; Gschwandtner, Martha 2   VIAFID ORCID Logo  ; Gerlza, Tanja 1   VIAFID ORCID Logo  ; Koch, Manuel 3   VIAFID ORCID Logo  ; Midwood, Kim S 2 ; Kungl, Andreas J 4   VIAFID ORCID Logo 

 Institute of Pharmaceutical Sciences, Karl-Franzens-University Graz, Schubertstr. 1, 8010 Graz, Austria 
 Kennedy Institute of Rheumatology, University of Oxford, Roosevelt Drive, Oxford OX3 7FY, UK 
 Institute for Dental Research and Oral Musculoskeletal Biology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Joseph-Stelzmann-Str. 52, 50931 Cologne, Germany 
 Institute of Pharmaceutical Sciences, Karl-Franzens-University Graz, Schubertstr. 1, 8010 Graz, Austria; Antagonis Biotherapeutics GmbH, Strasserhofweg 77a, 8045 Graz, Austria 
First page
14694
Publication year
2023
Publication date
2023
Publisher
MDPI AG
ISSN
16616596
e-ISSN
14220067
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2876750568
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.