It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Human mobility networks can reveal insights into resilience phenomena, such as population response to, impacts on, and recovery from crises. The majority of human mobility network resilience characterizations, however, focus mainly on macroscopic network properties; little is known about variation in measured resilience characteristics (i.e., the extent of impact and recovery duration) across macroscopic, substructure (motif), and microscopic mobility scales. To address this gap, in this study, we examine the human mobility network in eight parishes in Louisiana (USA) impacted by the 2021 Hurricane Ida. We constructed human mobility networks using location-based data and examined three sets of measures: (1) macroscopic measures, such as network density, giant component size, and modularity; (2) substructure measures, such as motif distribution; and (3) microscopic mobility measures, such as the radius of gyration and average travel distance. To determine the extent of impact and duration of recovery, for each measure, we established the baseline values and examined the fluctuation of measures during the perturbation caused by Hurricane Ida. The results reveal the variation of impact extent and recovery duration obtained from different sets of measures at different scales. Macroscopic measures, such as giant components, tend to recover more quickly than substructure and microscopic measures. In fact, microscopic measures tend to recover more slowly than measures in other scales. These findings suggest that resilience characteristics in human mobility networks are scale-variant, and thus, a single measure at a particular scale may not be representative of the perturbation impacts and recovery duration in the network as a whole. These results spotlight the need to use measures at different scales to properly characterize resilience in human mobility networks.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 Texas A&M University, Zachry Department of Civil and Environmental Engineering, College Station, USA (GRID:grid.264756.4) (ISNI:0000 0004 4687 2082)