It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Background
Trastuzumab is the only approved target agent for the first-line treatment of human epidermal growth factor receptor-2 (HER-2) positive gastric cancer; however, trastuzumab resistance is a major problem in clinical practice. To comprehend the mechanism of trastuzumab resistance, we focused on the Wnt/β-catenin signaling pathway and its influence on the phenotypes and behavior of trastuzumab-resistant gastric cancer cells.
Methods
Trastuzumab-resistant NCI-N87R cells were established in vitro from the human gastric cancer cell line NCI-N87 by dose-escalating repeated trastuzumab treatment. We investigated the phenotypes of NCI-N87R cells, including Wnt signaling pathway activity. Gastric cancer organoid cells were incubated with complete medium and Wnt3a-depletion medium, and their resistance to trastuzumab was compared.
Results
NCI-N87R exhibited stemness and epithelial-mesenchymal transition (EMT)-like phenotypes, along with decreased levels of the epithelial marker E-cadherin and increased levels of the mesenchymal markers Vimentin and Snail along with an increased Wnt signaling pathway activity. When gastric cancer cells were incubated in Wnt3a-conditioned medium. Wnt signaling pathway activity and resistance to trastuzumab increased. Gastric cancer patient-derived organoids incubated in Wnt3a-depletion medium were more susceptible to dose-dependent inhibition of cell viability by trastuzumab than those incubated in complete medium.
Conclusions
Trastuzumab-resistant gastric cancer cells exhibited EMT-like phenotype, and trastuzumab resistance was promoted by the Wnt/β-catenin signaling pathway. The Wnt/β-catenin pathway is a key signaling pathway for trastuzumab resistance in gastric cancer cells.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer