It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Background
Currently, radiation therapy treatment planning system intends biological optimization that relies heavily upon plan metrics from tumor control probability (TCP) and normal tissue complication probability (NTCP) modeling. Implementation and expansion of TCP and NTCP models with alternative data is an important step towards reliable radiobiological treatment planning. In this retrospective single institution study, the treatment charts of 139 lung cancer patients treated with chemo-radiotherapy were reviewed and correlated dosimetric predictors with the incidence of esophagitis and established NTCP model of esophagitis grade 1 and 2 for lung cancer patients.
Methods
Esophagus is an organ at risk (OAR) in lung cancer radiotherapy (RT). Esophagitis is a common toxicity induced by RT. In this study, dose volume parameters Vx (Vx: percentage esophageal volume receiving ≥ x Gy) and mean esophagus dose (MED) as quantitative dose-volume metrics, the esophagitis grade 1 and 2 as endpoints, were reviewed and derived from the treatment planning system and the electronic medical record system. Statistical analysis of binary logistic regression and probit were performed to have correlated the probability of grade 1 and 2 esophagitis to MED and Vx. IBM SPSS software version 24 at 5% significant level (α = 0.05) was used in the statistical analysis.
Results
The probabilities of incidence of grade 1 and 2 esophagitis proportionally increased with increasing the values of Vx and MED. V20, V30, V40, V50 and MED are statistically significant good dosimetric predictors of esophagitis grade 1. 50% incidence probability (TD50) of MED for grade 1 and 2 esophagitis were determined. Lyman Kutcher Burman model parameters, such as, n, m and TD50, were fitted and compared with other published findings. Furthermore, the sigmoid shaped dose responding curve between probability of esophagitis grade 1 and MED were generated respecting to races, gender, age and smoking status.
Conclusions
V20, V30, V40 and V50 were added onto Quantitative Analysis of Normal Tissue Effects in the clinic, or QUANTEC group’s dose constrains of V35, V50, V70 and MED. Our findings may be useful as both validation of 3-Dimensional planning era models and also additional clinical guidelines in treatment planning and plan evaluation using radiobiology optimization.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer