It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Background
Postoperative urine retention (POUR) after lumbar interbody fusion surgery may lead to recatheterization and prolonged hospitalization. In this study, a predictive model was constructed and validated. The objective was to provide a nomogram for estimating the risk of POUR and then reducing the incidence.
Methods
A total of 423 cases of lumbar fusion surgery were included; 65 of these cases developed POUR, an incidence of 15.4%. The dataset is divided into a training set and a validation set according to time. 18 candidate variables were selected. The candidate variables were screened through LASSO regression. The stepwise regression and random forest analysis were then conducted to construct the predictive model and draw a nomogram. The area under the curve (AUC) of the receiver operating characteristic (ROC) curve and the calibration curve were used to evaluate the predictive effect of the model.
Results
The best lambda value in LASSO was 0.025082; according to this, five significant variables were screened, including age, smoking history, surgical method, operative time, and visual analog scale (VAS) score of postoperative low back pain. A predictive model containing four variables was constructed by stepwise regression. The variables included age (β = 0.047, OR = 1.048), smoking history (β = 1.950, OR = 7.031), operative time (β = 0.022, OR = 1.022), and postoperative VAS score of low back pain (β = 2.554, OR = 12.858). A nomogram was drawn based on the results. The AUC of the ROC curve of the training set was 0.891, the validation set was 0.854 in the stepwise regression model. The calibration curves of the training set and validation set are in good agreement with the actual curves, showing that the stepwise regression model has good prediction ability. The AUC of the training set was 0.996, and that of the verification set was 0.856 in the random forest model.
Conclusion
This study developed and internally validated a new nomogram and a random forest model for predicting the risk of POUR after lumbar interbody fusion surgery. Both of the nomogram and the random forest model have high accuracy in this study.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer