Abstract

Tropical forest recovery is fundamental to addressing the intertwined climate and biodiversity loss crises. While regenerating trees sequester carbon relatively quickly, the pace of biodiversity recovery remains contentious. Here, we use bioacoustics and metabarcoding to measure forest recovery post-agriculture in a global biodiversity hotspot in Ecuador. We show that the community composition, and not species richness, of vocalizing vertebrates identified by experts reflects the restoration gradient. Two automated measures – an acoustic index model and a bird community composition derived from an independently developed Convolutional Neural Network - correlated well with restoration (adj-R² = 0.62 and 0.69, respectively). Importantly, both measures reflected composition of non-vocalizing nocturnal insects identified via metabarcoding. We show that such automated monitoring tools, based on new technologies, can effectively monitor the success of forest recovery, using robust and reproducible data.

Cost-effective biodiversity monitoring through time is important for evidence-based conservation. Here, the authors show that automated bioacoustics monitoring can be used to track tropical forest recovery from agricultural abandonment, suggesting its use to assess restoration outcomes.

Details

Title
Soundscapes and deep learning enable tracking biodiversity recovery in tropical forests
Author
Müller, Jörg 1   VIAFID ORCID Logo  ; Mitesser, Oliver 2 ; Schaefer, H. Martin 3 ; Seibold, Sebastian 4   VIAFID ORCID Logo  ; Busse, Annika 5 ; Kriegel, Peter 2 ; Rabl, Dominik 2   VIAFID ORCID Logo  ; Gelis, Rudy 6 ; Arteaga, Alejandro 7 ; Freile, Juan 8 ; Leite, Gabriel Augusto 9 ; de Melo, Tomaz Nascimento 9 ; LeBien, Jack 9 ; Campos-Cerqueira, Marconi 9   VIAFID ORCID Logo  ; Blüthgen, Nico 10   VIAFID ORCID Logo  ; Tremlett, Constance J. 10 ; Böttger, Dennis 11   VIAFID ORCID Logo  ; Feldhaar, Heike 12 ; Grella, Nina 12   VIAFID ORCID Logo  ; Falconí-López, Ana 13 ; Donoso, David A. 14   VIAFID ORCID Logo  ; Moriniere, Jerome 15 ; Buřivalová, Zuzana 16   VIAFID ORCID Logo 

 Biocenter, University of Würzburg, Field Station Fabrikschleichach, Department of Animal Ecology and Tropical Biology, Rauhenebrach, Germany (GRID:grid.8379.5) (ISNI:0000 0001 1958 8658); Bavarian Forest National Park, Grafenau, Germany (GRID:grid.452215.5) (ISNI:0000 0004 7590 7184) 
 Biocenter, University of Würzburg, Field Station Fabrikschleichach, Department of Animal Ecology and Tropical Biology, Rauhenebrach, Germany (GRID:grid.8379.5) (ISNI:0000 0001 1958 8658) 
 Fundación Jocotoco, Valladolid N24-414 y Luis Cordero, Quito, Ecuador (GRID:grid.8379.5) 
 Ecosystem Dynamics and Forest Management Research Group, Technical University of Munich, School of Life Sciences, Freising, Germany (GRID:grid.6936.a) (ISNI:0000 0001 2322 2966); Berchtesgaden National Park, Berchtesgaden, Germany (GRID:grid.6936.a) 
 Saxon-Switzerland National Park, Bad Schandau, Germany (GRID:grid.6936.a) 
 Yanayacu Research Center, Cosanga, Ecuador (GRID:grid.8379.5) 
 Biodiversity Field Lab (BioFL), Khamai Foundation, Quito, Ecuador (GRID:grid.8379.5) 
 Pasaje El Moro E4-216 y Norberto Salazar, Tumbaco, Ecuador (GRID:grid.8379.5) 
 Rainforest Connection, Science Department, Katy, USA (GRID:grid.8379.5) 
10  Technische Universität Darmstadt, Ecological Networks Lab, Department of Biology, Darmstadt, Germany (GRID:grid.6546.1) (ISNI:0000 0001 0940 1669) 
11  Friedrich-Schiller-University Jena, Phyletisches Museum, Institute for Zoology and Evolutionary Research, Jena, Germany (GRID:grid.9613.d) (ISNI:0000 0001 1939 2794) 
12  University of Bayreuth, Animal Population Ecology, Bayreuth Center for Ecology and Environmental Research (BayCEER), Bayreuth, Germany (GRID:grid.7384.8) (ISNI:0000 0004 0467 6972) 
13  Biocenter, University of Würzburg, Field Station Fabrikschleichach, Department of Animal Ecology and Tropical Biology, Rauhenebrach, Germany (GRID:grid.8379.5) (ISNI:0000 0001 1958 8658); Medio Ambiente y Salud-BIOMAS-Universidad de las Américas, Grupo de Investigación en Biodiversidad, Quito, Ecuador (GRID:grid.442184.f) (ISNI:0000 0004 0424 2170) 
14  Medio Ambiente y Salud-BIOMAS-Universidad de las Américas, Grupo de Investigación en Biodiversidad, Quito, Ecuador (GRID:grid.442184.f) (ISNI:0000 0004 0424 2170); Escuela Politécnica Nacional, Departamento de Biología, Facultad de Ciencias, Quito, Ecuador (GRID:grid.440857.a) (ISNI:0000 0004 0485 2489) 
15  AIM - Advanced Identification Methods GmbH, Leipzig, Germany (GRID:grid.440857.a) 
16  University of Wisconsin-Madison, Department of Forest and Wildlife Ecology and The Nelson Institute for Environmental Studies, Madison, USA (GRID:grid.14003.36) (ISNI:0000 0001 2167 3675) 
Pages
6191
Publication year
2023
Publication date
2023
Publisher
Nature Publishing Group
e-ISSN
20411723
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2878164437
Copyright
© The Author(s) 2023. corrected publication 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.