Full text

Turn on search term navigation

© 2023. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The orally available anti-hepatitis C virus (HCV) drug simeprevir exhibits nonlinear pharmacokinetics at the clinical doses due to saturation of cytochrome P450 (CYP) 3A4 metabolism and organic anion transporting peptide (OATP) 1B mediated hepatic uptake. Additionally, simeprevir increases exposures of concomitant drugs by CYP3A4 and OATP1B inhibition. The objective of this study was to develop physiologically-based pharmacokinetic (PBPK) models that could describe drug–drug interactions (DDIs) of simeprevir with concomitant drugs via CYP3A4 and OATP1B inhibition, and also to capture the effects on coproporphyrin-I (CP-I), an endogenous biomarker of OATP1B. PBPK modeling estimated unbound simeprevir inhibitory constant (Ki) of 2.89 μM against CYP3A4 in the DDI results between simeprevir and midazolam in healthy volunteers. Then, we analyzed the DDIs between simeprevir and atorvastatin, a dual substrate of CYP3A4 and OATP1B, in healthy volunteers, and unbound Ki against OATP1B was estimated to be 0.00347 μM. Finally, we analyzed the increase in the blood level of CP-I by simeprevir to verify the Ki,OATP1B. Because CP-I was measured in subjects with HCV with various hepatic fibrosis state, Monte Carlo simulation was performed to involve the decreases in expression levels of hepatic CYP3A4 and OATP1B and their interindividual variabilities. The PBPK modeling coupled with Monte Carlo simulation using the Ki,OATP1B value obtained from atorvastatin study reasonably recovered the observed relationship between CP-I and simeprevir blood levels. In conclusion, the simeprevir PBPK model developed in this study can quantitatively describe the increase in exposures of concomitant drugs and an endogenous biomarker via inhibition of CYP3A4 and OATP1B.

Details

Title
Physiologically-based pharmacokinetic modeling for investigating the effect of simeprevir on concomitant drugs and an endogenous biomarker of OATP1B
Author
Nakayama, Shinji 1 ; Kota Toshimoto 2 ; Yamazaki, Shinji 3   VIAFID ORCID Logo  ; Snoeys, Jan 4 ; Sugiyama, Yuichi 5 

 DMPK Research Laboratories, Shoyaku, Innovative Research Division, Mitsubishi Tanabe Pharma Corporation, Yokohama, Kanagawa, Japan 
 Systems Pharmacology, Non-Clinical Biomedical Science, Applied Research and Operations, Astellas Pharma Inc., Ibaraki, Japan; Sugiyama Laboratory, RIKEN Cluster for Science, RIKEN, Yokohama, Kanagawa, Japan 
 Drug Metabolism and Pharmacokinetics, Janssen Research and Development, LLC, San Diego, California, USA 
 Drug Metabolism and Pharmacokinetics, Janssen Research and Development, Beerse, Belgium 
 Sugiyama Laboratory, RIKEN Cluster for Science, RIKEN, Yokohama, Kanagawa, Japan; Laboratory of Quantitative System Pharmacokinetics/Pharmacodynamics, Josai International University (JIU), Tokyo, Japan 
Pages
1461-1472
Section
RESEARCH
Publication year
2023
Publication date
Oct 2023
Publisher
John Wiley & Sons, Inc.
e-ISSN
21638306
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2878245227
Copyright
© 2023. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.