Abstract

Lactate accumulation and acidification in tumours are a cancer hallmark associated with the Warburg effect. Lactic acidosis correlates with cancer malignancy, and the benefit it offers to tumours has been the subject of numerous hypotheses. Strikingly, lactic acidosis enhances cancer cell survival to environmental glucose depletion by repressing high-rate glycolysis and lactic fermentation, and promoting an oxidative metabolism involving reactivated respiration. We used real-time NMR to evaluate how cytosolic lactate accumulation up to 40 mM and acidification up to pH 6.5 individually impact glucose consumption, lactate production and pyruvate evolution in isolated cytosols. We used a reductive cell-free system (CFS) to specifically study cytosolic metabolism independently of other Warburg-regulatory mechanisms found in the cell. We assessed the impact of lactate and acidification on the Warburg metabolism of cancer cytosols, and whether this effect extended to different cytosolic phenotypes of lactic fermentation and cancer. We observed that moderate acidification, independently of lactate concentration, drastically reduces the glucose consumption rate and halts lactate production in different lactic fermentation phenotypes. In parallel, for Warburg-type CFS lactate supplementation induces pyruvate accumulation at control pH, and can maintain a higher cytosolic pyruvate pool at low pH. Altogether, we demonstrate that intracellular acidification accounts for the direct repression of lactic fermentation by the Warburg-associated lactic acidosis.

Details

Title
Warburg-associated acidification represses lactic fermentation independently of lactate, contribution from real-time NMR on cell-free systems
Author
Daverio, Zoé 1 ; Kolkman, Maxime 2 ; Perrier, Johan 3 ; Brunet, Lexane 3 ; Bendridi, Nadia 3 ; Sanglar, Corinne 4 ; Berger, Marie-Agnès 3 ; Panthu, Baptiste 3   VIAFID ORCID Logo  ; Rautureau, Gilles J. P. 5   VIAFID ORCID Logo 

 University of Lyon, Université Claude Bernard Lyon 1, Laboratoire CarMeN, UMR INSERM U1060/INRAE U1397, Pierre-Bénite, France (GRID:grid.7849.2) (ISNI:0000 0001 2150 7757); University of Lyon, Université Claude Bernard Lyon 1, Master de Biologie, École Normale Supérieure de Lyon, Lyon Cedex 07, France (GRID:grid.7849.2) (ISNI:0000 0001 2150 7757) 
 University of Lyon, Université Claude Bernard Lyon 1, Laboratoire CarMeN, UMR INSERM U1060/INRAE U1397, Pierre-Bénite, France (GRID:grid.7849.2) (ISNI:0000 0001 2150 7757); University of Lyon, Université Claude Bernard Lyon 1, Institut de Chimie et Biochimie Moléculaires et Supramoléculaires, ICBMS UMR 5246, Lyon, France (GRID:grid.25697.3f) (ISNI:0000 0001 2172 4233) 
 University of Lyon, Université Claude Bernard Lyon 1, Laboratoire CarMeN, UMR INSERM U1060/INRAE U1397, Pierre-Bénite, France (GRID:grid.7849.2) (ISNI:0000 0001 2150 7757) 
 University of Lyon, Université Claude Bernard Lyon 1, Institut des Sciences Analytiques, UMR5280 CNRS, Villeurbanne, France (GRID:grid.7849.2) (ISNI:0000 0001 2150 7757) 
 University of Lyon, Université Claude Bernard Lyon 1, Institut de Chimie et Biochimie Moléculaires et Supramoléculaires, ICBMS UMR 5246, Lyon, France (GRID:grid.25697.3f) (ISNI:0000 0001 2172 4233) 
Pages
17733
Publication year
2023
Publication date
2023
Publisher
Nature Publishing Group
e-ISSN
20452322
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2878560555
Copyright
© The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.