It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
In this study, to develop soft pressure sensor applicable to wearable robots using stretchable polymers and conductive fillers, 3.25 wt% carbon nanotubes/thermoplastic polyurethane filament with shore 94 A were manufactured. Three infill densities (20%, 50%, and 80%) and patterns (zigzag (ZG), triangle (TR), honeycomb (HN)) were applied to print cubes via fused filament fabrication 3D printing. Most suitable infill conditions were confirmed based on the slicing images, morphologies, compressive properties, electrical properties, and electrical heating properties. For each infill pattern, ZG and TR divided the layers into lines and figures, and the layers were stacked by rotation. For HN, the same layers were stacked in a hexagonal pattern. Consequently, TR divided layer in various directions, showed the strongest compressive properties with toughness 1.99 J for of infill density 80%. Especially, the HN became tougher with increased infill density. Also, the HN laminated with the same layer showed excellent electrical properties, with results greater than 14.7 mA. The electrical heating properties confirmed that ZG and HN had the high layer density, which exhibited excellent heating characteristics. Therefore, it was confirmed that performance varies depending on the 3D printing direction, and it was confirmed that HN is suitable for manufacturing soft sensors.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 Dong-A University, Department of Fashion and Textiles, Busan, Republic of Korea (GRID:grid.255166.3) (ISNI:0000 0001 2218 7142)
2 Dong-A University, Department of Organic Materials and Polymer Engineering, Busan, Republic of Korea (GRID:grid.255166.3) (ISNI:0000 0001 2218 7142)
3 Dong-A University, Department of Fashion and Textiles, Busan, Republic of Korea (GRID:grid.255166.3) (ISNI:0000 0001 2218 7142); Dong-A University, Department of Fashion Design, Busan, Republic of Korea (GRID:grid.255166.3) (ISNI:0000 0001 2218 7142)