Abstract

The need for direct X-ray detection under high photon flux with moderate or high energies (30–100 keV range) has strongly increased with the rise of the 4th Generation Synchrotron Light Sources, characterised by extremely brilliant beamlines, and of other applications such as spectral computed tomography in medicine and non-destructive tests for industry. The novel Cadmium Zinc Telluride (CZT) developed by Redlen Technologies can be considered the reference material for high-flux applications (HF-CZT). The enhanced charge transport properties of the holes allow the mitigation of the effects of radiation induced polarization phenomena, typically observed in standard CZT materials (LF-CZT) under high photon flux. However, standard LF-CZT electrical contacts led to inacceptable high dark leakage currents on HF-CZT devices. In this work, a detailed study on the characteristics of new optimized sputtered platinum electrical contacts on HF-CZT detectors is reported. The results from electrical and spectroscopic investigations, showed the best performances on HF-CZT detectors with platinum anode, coupled with both platinum or gold cathode. The morphology, structure, and composition of Pt/CZT contact have been analysed by means of Transmission Electron Microscopy (TEM) on microscopic lamellas obtained by Focused Ion Beam (FIB), highlighting the presence of CdTeO3 oxide at the metal semiconductor interface.

Details

Title
High performance platinum contacts on high-flux CdZnTe detectors
Author
Bettelli, Manuele 1 ; Zanettini, Silvia 2 ; Abbene, Leonardo 3 ; Casoli, Francesca 4 ; Nasi, Lucia 4 ; Trevisi, Giovanna 4 ; Principato, Fabio 3 ; Buttacavoli, Antonino 3 ; Zappettini, Andrea 4 

 IMEM-CNR, Parma, Italy 
 due2lab S.R.L., Scandiano, Italy 
 University of Palermo, Department of Physics and Chemistry (DiFC) - Emilio Segrè, Palermo, Italy (GRID:grid.10776.37) (ISNI:0000 0004 1762 5517) 
 IMEM-CNR, Parma, Italy (GRID:grid.10776.37) 
Pages
17963
Publication year
2023
Publication date
2023
Publisher
Nature Publishing Group
e-ISSN
20452322
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2879465371
Copyright
© The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.