It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
S. aureus is a pathogen that frequently causes severe morbidity and phage therapy is being discussed as an alternative to antibiotics for the treatment of S. aureus infections. In this in vitro and animal study, we demonstrated that the activity of anti-staphylococcal phages is severely impaired in 0.5% plasma or synovial fluid. Despite phage replication in these matrices, lysis of the bacteria was slower than phage propagation, and no reduction of the bacterial population was observed. The inhibition of the phages associated with a reduction in phage adsorption, quantified to 99% at 10% plasma. S. aureus is known to bind multiple coagulation factors, resulting in the formation of aggregates and blood clots that might protect the bacterium from the phages. Here, we show that purified fibrinogen at a sub-physiological concentration of 0.4 mg/ml is sufficient to impair phage activity. In contrast, dissolution of the clots by tissue plasminogen activator (tPA) partially restored phage activity. Consistent with these in vitro findings, phage treatment did not reduce bacterial burdens in a neutropenic mouse S. aureus thigh infection model. In summary, phage treatment of S. aureus infections inside the body may be fundamentally challenging, and more investigation is needed prior to proceeding to in-human trials.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 BioNTech R&D Austria GmbH, Vienna, Austria
2 Lausanne Hospital (CHUV), Center for Research and Innovation in Clinical Pharmaceutical Sciences (CRISP), Lausanne, Switzerland (GRID:grid.414250.6) (ISNI:0000 0001 2181 4933)
3 BioNTech R&D Austria GmbH, Vienna, Austria (GRID:grid.414250.6)