It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Electric Taxis (ETs) are the most favored alternatives to Gasoline Taxis (GTs) in cities that aim to reduce environmental pollution. How to develop a reasonable scale on which GTs are substituted by ETs remains a challenge to governments due to the dynamics and complexity of the taxi system. To address this challenge, this paper develops a discrete-event-based simulation framework to simulate participants in the system and estimate the results under different substitution scales, which are helpful to understanding the status changing law of entities under different substitution scales, such as the operating indices of ETs, the unsatisfied travel requirements of passengers, and the usage state of charging facilities. The framework abstracts the behavioral process of ETs into three elements, namely, entity, behavior, and event. The entities are constructed from the information derived from the trajectory data. The behaviors are defined by rules following behavioral logic under anxiety psychology, which is caused by the limited range of ETs. The events are triggered based on rules from reality. With the help of this framework, a multi-objective optimization model is developed to obtain the optimal substitution scale of GTs in the case study area of Zhengzhou City. Overall, the approach could provide a practical tool to address this challenge, which could support further studies of the effect of ETs on urban taxis.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 State Key Laboratory of Information Engineering in Surveying, Mapping and Remote Sensing, Wuhan University, Wuhan, China
2 Key Laboratory of Advanced Public Transportation Science, China Academy of Transportation Sciences, Beijing, China