Full text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Deep learning models are often trained with a large amount of labeled data to improve the accuracy for moving object detection in new fields. However, the model may not be robust enough due to insufficient training data in the new field, resulting in some moving objects not being successfully detected. Training with data that is not successfully detected by the pre-trained deep learning model can effectively improve the accuracy for the new field, but it is costly to retrieve the image data containing the moving objects from millions of images per day to train the model. Therefore, we propose FenceTalk, a moving object detection system, which compares the difference between the current frame and the background image based on the structural similarity index measure (SSIM). FenceTalk automatically selects suspicious images with moving objects that are not successfully detected by the Yolo model, so that the training data can be selected at a lower labor cost. FenceTalk can effectively define and update the background image in the field, reducing the misjudgment caused by changes in light and shadow, and selecting images containing moving objects with an optimal threshold. Our study has demonstrated its performance and generality using real data from different fields. For example, compared with the pre-trained Yolo model using the MS COCO dataset, the overall recall of FenceTalk increased from 72.36% to 98.39% for the model trained with the data picked out by SSIM. The recall of FenceTalk, combined with Yolo and SSIM, can reach more than 99%.

Details

Title
FenceTalk: Exploring False Negatives in Moving Object Detection
Author
Yun-Wei, Lin 1 ; Liu, Yuh-Hwan 2 ; Yi-Bing, Lin 3   VIAFID ORCID Logo  ; Jian-Chang, Hong 1 

 The College of Artificial Intelligence, National Yang Ming Chiao Tung University, Tainan 711, Taiwan; [email protected] 
 Faculty of Technology Management, China Medical University, Taichung 404, Taiwan; [email protected] 
 College of Computer Science, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan; College of Biomedical Engineering, China Medical University, Taichung 404, Taiwan; Miin Wu School of Computing, National Cheng Kung University, Tainan 701, Taiwan; Research Center for Information Technology Innovation, Academia Sinica, Taipei 115, Taiwan 
First page
481
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
19994893
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2882263886
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.