Full text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Timely and accurate acquisition of crop planting areas and spatial distribution are deemed essential for grasping food configurations and guiding agricultural production. Despite the increasing research on crop mapping and changes with the development of remote sensing technology, most studies have focused on large-scale regions, with limited research being conducted in fragmented and ecologically vulnerable valley areas. To this end, this study utilized Landsat ETM+/OLI images as the data source to extract additional features, including vegetation index, terrain, and texture. We employed the Random Forest Recursive Feature Elimination (RF_RFE) algorithm for feature selection and evaluated the effectiveness of three machine learning algorithms—Support Vector Machine (SVM), Random Forest (RF), and Rotation Forest (ROF)—for crop extraction. Then, based on the optimal classifiers, the main crops in the Huangshui basin for the years of 2002, 2014, and 2022 were extracted. Finally, the transfer matrix, the gravity center model, and the Standard Deviation Ellipse (SDE) model were used to analyze the spatio—temporal changes of crops over the past 20 years in the Huangshui basin. The results showed that the spectral, vegetation index, and terrain features played a crucial role in crop extraction. Comparing the performance of the classifiers, the ROF algorithm displayed superior effectiveness in crop identification. The overall accuracy of crop extraction was above 86.97%, and the kappa coefficient was above 0.824. Notably, between 2002 and 2022, significant shifts in crop distribution within the Huangshui basin were observed. The highland barley experienced a net increase in planting area at a rate of 8.34 km2/year, while the spring wheat and oilseed rape demonstrated net decreases at rates of 16.02 km2/year and 14.28 km2/year, respectively. Furthermore, the study revealed that highland barley exhibited the most substantial movement, primarily expanding towards the southeast direction.

Details

Title
Crop Mapping and Spatio–Temporal Analysis in Valley Areas Using Object-Oriented Machine Learning Methods Combined with Feature Optimization
Author
Fu, Xiaoli 1 ; Zhou, Wenzuo 1 ; Zhou, Xinyao 1 ; Hu, Yichen 1 

 School of Geographical Sciences, Southwest University, Chongqing 400715, China; [email protected] (X.F.); [email protected] (X.Z.); [email protected] (Y.H.); Chongqing Jinfo Mountain Karst Ecosystem National Observation and Research Station, School of Geographical Sciences, Southwest University, Chongqing 400715, China; Chongqing Engineering Research Center for Remote Sensing Big Data Application, School of Geographical Sciences, Southwest University, Chongqing 400715, China 
First page
2467
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
20734395
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2882278713
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.