Full text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The automotive industry is rapidly transitioning to electric vehicles (EVs) in response to the global efforts to reduce greenhouse gas emissions. Lithium-ion battery (LIB) has emerged as the main tool for energy storage in electric vehicles. A widespread adoption of EVs, however, requires a fast-charging technology that can significantly reduce charging time while avoiding any unsafe conditions including short circuits due to failure of the separator in an LIB cell. Therefore, it is necessary to understand the mechanical stresses during fast charging and their long-term effect on the integrity of the separator. This paper presents a novel hybrid model for the prediction of the stress distribution in the separator of a pouch cell under various charging speeds, ambient temperatures, and pack assembly conditions, such as compressive pressures. The proposed hybrid model consists of three sub-models, namely, an electrochemical cell model, a lumped-parameter model, and a solid mechanics model. A robust parameter identification scheme is implemented to determine the model parameters using the experimental data. The separator within the test setup will experience maximum von Mises stress of 74 MPa during 4C charging, i.e., when the charge current in A is four times as high as the capacity of the battery cell in Ah. To assess the evolution of the damage in the separator under the estimated stress during fast charging, creep and fatigue tests are conducted on the separator. Their results indicate a progressive accumulation of damage in the separator, further emphasizing the importance of understanding and mitigating mechanical degradation in separator materials.

Details

Title
Stress Distribution Inside a Lithium-Ion Battery Cell during Fast Charging and Its Effect on Degradation of Separator
Author
Makki, Mustapha  VIAFID ORCID Logo  ; Lee, Cheol W  VIAFID ORCID Logo  ; Ayoub, Georges  VIAFID ORCID Logo 
First page
502
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
23130105
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2882297977
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.