Full Text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Simple Summary

There is a growing demand for molecules of natural origin for biocontrol and biostimulation, given the current trend away from synthetic chemicals. Leachates extracted from plantain stems, obtained after the biodegradation of plant material, were characterized to test their potential role as fungicides, plant defense elicitors, and/or plant biostimulants. The plant extracts induced a slight inhibition of fungal growth of an aggressive strain of Colletotrichum gloeosporioides, responsible for anthracnose. Organic compounds such as cinnamic, ellagic, quinic, and fulvic acids and indole alkaloids such as ellipticine, as well as minerals such as potassium, calcium, and phosphorus, may be responsible for the inhibition of fungal growth. Jasmonic, benzoic, and salicylic acids have also been found. These are known to play a role in plant defense and as biostimulants in tomatoes. Indeed, foliar application of banana leachate induced overexpression of the LOXD, PPOD, and Worky70-80 genes, which are involved in phenylpropanoid metabolism, jasmonic acid biosynthesis, and salicylic acid metabolism, respectively. Leachate also activated root growth in tomato seedlings. However, the main effect of leachate was observed in mature plants, where it reduced leaf area and fresh weight, remodeled stem cell wall glycopolymers, and increased proline dehydrogenase gene expression.

Abstract

There is a growing demand for molecules of natural origin for biocontrol and biostimulation, given the current trend away from synthetic chemical products. Leachates extracted from plantain stems were obtained after biodegradation of the plant material. To characterize the leachate, quantitative determinations of nitrogen, carbon, phosphorus, and cations (K+, Ca2+, Mg2+, Na+), Q2/4, Q2/6, and Q4/6 absorbance ratios, and metabolomic analysis were carried out. The potential role of plantain leachates as fungicide, elicitor of plant defense, and/or plant biostimulant was evaluated by agar well diffusion method, phenotypic, molecular, and imaging approaches. The plant extracts induced a slight inhibition of fungal growth of an aggressive strain of Colletotrichum gloeosporioides, which causes anthracnose. Organic compounds such as cinnamic, ellagic, quinic, and fulvic acids and indole alkaloid such as ellipticine, along with some minerals such as potassium, calcium, and phosphorus, may be responsible for the inhibition of fungal growth. In addition, jasmonic, benzoic, and salicylic acids, which are known to play a role in plant defense and as biostimulants in tomato, were detected in leachate extract. Indeed, foliar application of banana leachate induced overexpression of LOXD, PPOD, and Worky70-80 genes, which are involved in phenylpropanoid metabolism, jasmonic acid biosynthesis, and salicylic acid metabolism, respectively. Leachate also activated root growth in tomato seedlings. However, the main impact of the leachate was observed on mature plants, where it caused a reduction in leaf area and fresh weight, the remodeling of stem cell wall glycopolymers, and an increase in the expression of proline dehydrogenase.

Details

Title
Biological and Chemical Characterization of Musa paradisiaca Leachate
Author
Boulogne, Isabelle 1   VIAFID ORCID Logo  ; Petit, Philippe 2   VIAFID ORCID Logo  ; Desfontaines, Lucienne 3 ; Durambur, Gaëlle 1 ; Deborde, Catherine 4   VIAFID ORCID Logo  ; Mirande-Ney, Cathleen 1   VIAFID ORCID Logo  ; Arnaudin, Quentin 1 ; Plasson, Carole 1 ; Grivotte, Julie 1   VIAFID ORCID Logo  ; Chamot, Christophe 5 ; Bernard, Sophie 6   VIAFID ORCID Logo  ; Loranger-Merciris, Gladys 2   VIAFID ORCID Logo 

 Université de Rouen Normandie, Normandie Univ, GlycoMEV UR 4358, SFR Normandie Végétal FED 4277, Innovation Chimie Carnot, IRIB, GDR CNRS Chemobiologie, RMT BESTIM, F-76000 Rouen, France; [email protected] (I.B.); [email protected] (G.D.); [email protected] (C.M.-N.); [email protected] (Q.A.); [email protected] (C.P.); [email protected] (J.G.); [email protected] (S.B.) 
 Université des Antilles, UMR ISYEB-MNHN-CNRS-Sorbonne Université-EPHE, UFR Sciences Exactes et Naturelles, Campus de Fouillole, F-97157 Pointe-à-Pitre, Guadeloupe, France; [email protected] 
 ASTRO Agrosystèmes Tropicaux, INRAE, F-97170 Petit-Bourg, Guadeloupe, France; [email protected] 
 INRAE, PROBE Research Infrastructure, BIBS Facility, F-44300 Nantes, France; [email protected]; INRAE, UR1268 BIA Biopolymères Interactions Assemblages F-44300 Nantes, France 
 Université de Rouen Normandie, Normandie Univ, INSERM, CNRS, HeRacLeS US 51 UAR 2026, PRIMACEN, F-76000 Rouen, France; [email protected] 
 Université de Rouen Normandie, Normandie Univ, GlycoMEV UR 4358, SFR Normandie Végétal FED 4277, Innovation Chimie Carnot, IRIB, GDR CNRS Chemobiologie, RMT BESTIM, F-76000 Rouen, France; [email protected] (I.B.); [email protected] (G.D.); [email protected] (C.M.-N.); [email protected] (Q.A.); [email protected] (C.P.); [email protected] (J.G.); [email protected] (S.B.); Université de Rouen Normandie, Normandie Univ, INSERM, CNRS, HeRacLeS US 51 UAR 2026, PRIMACEN, F-76000 Rouen, France; [email protected] 
First page
1326
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
20797737
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2882308814
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.