Full text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

How to deal with hard rock cheaply and safely is a pressing issue in today’s coal mining. Weakening fractures of hard rock have always been a significant concern in China’s coal mine engineering. In this study, mechanical derivation, laboratory experiments, and numerical simulation research methodologies are used to evaluate the fracturing process of the static crushing agent (SCA). From a mechanical standpoint, the mechanism of fracturing hard rock by a crushing agent is investigated. It is assumed that single-hole fracturing is separated into three stages: the microfracture stage, the fissure development stage, and the breaking stage. The swelling and fracturing properties of SCA were quantitatively analyzed. It was found that the swelling pressure of SCA increased with the increase in pore diameter, and the range of the swelling pressure was 43.5 MPa to 75.1 MPa. SCA exhibited a delayed fracture initiation, but the rate of breakage was relatively high. The cracking effect of a single-hole specimen under no peripheral pressure was simulated using PFC2D, and the results were consistent with experimental observations. The internal dynamic effect, crack extension, distribution characteristics, and the development law of double-hole expansion pressure were analyzed for double-hole specimens with different hole diameters, hole spacings, and circumferential pressures. It was observed that the cracking effect was positively correlated with the pore diameter, while the pore spacing and surrounding pressure were negatively correlated. The size of the expansion pressure was negatively correlated with the pore diameter, while the pore spacing and surrounding pressure were positively correlated.

Details

Title
Study on Mechanism of Static Blasting-Induced Hard Rock Fracture Expansion
Author
Xu, Zhijun 1   VIAFID ORCID Logo  ; Cao, Yue 1 ; Li, Chong 1 ; Tai, Lianhai 1 ; He, Sifeng 2 

 School of Mining Engineering, China University of Mining and Technology, Xuzhou 221116, China[email protected] (L.T.) 
 Coal Mining and Designing Branch, China Coal Research Institute, Beijing 100013, China 
First page
11310
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
20763417
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2882386193
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.