Full text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Fountain code can significantly increase eavesdroppers’ untranslated efficiency in the wireless communication eavesdropping channel. The secondary LT coding anti-eavesdropping scheme with fountain code degree-1 is the subject of a theoretical investigation in this paper. The fact that its channel security capacity is greater than that of traditional LT code is first deduced from an information-theoretic standpoint, and the impact of source symbol length on decoding complexity and decoding overhead is then examined. The experimental results show that, compared with the traditional anti-eavesdropping twice fountain code, selecting long source symbols for double LT coding, when the main channel is better than the eavesdropping channel, can ensure that the eavesdropper has a higher untranslated efficiency, and can effectively reduce the fountain code decoding complexity and the number of encoded symbols sent by the source to improve the efficiency of information transmission.

Details

Title
Analysis and Research on Secondary LT Coding Anti-Eavesdropping Scheme Based on LT Code Degree-1
Author
Wang, Lizheng 1 ; Niu, Fanglin 1 ; Jin, Jingjing 2 ; Yu, Ling 1 

 School of Electronics and Information Engineering, Liaoning University of Technology, Jinzhou 121001, China; [email protected] (L.W.); [email protected] (L.Y.) 
 China Mobile Communications Group Limited, Chaoyang 122000, China; [email protected] 
First page
11296
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
20763417
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2882387760
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.