Full text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Partition-based clustering is widely applied over diverse domains. Researchers and practitioners from various scientific disciplines engage with partition-based algorithms relying on specialized software or programming libraries. Addressing the need to bridge the knowledge gap associated with these tools, this paper introduces kClusterHub, an AutoML-driven web tool that simplifies the execution of partition-based clustering over numerical, categorical and mixed data types, while facilitating the identification of the optimal number of clusters, using the elbow method. Through automatic feature analysis, kClusterHub selects the most appropriate algorithm from the trio of k-means, k-modes, and k-prototypes. By empowering users to seamlessly upload datasets and select features, kClusterHub selects the algorithm, provides the elbow graph, recommends the optimal number of clusters, executes clustering, and presents the cluster assignment, through tabular representations and exploratory plots. Therefore, kClusterHub reduces the need for specialized software and programming skills, making clustering more accessible to non-experts. For further enhancing its utility, kClusterHub integrates a REST API to support the programmatic execution of cluster analysis. The paper concludes with an evaluation of kClusterHub’s usability via the System Usability Scale and CPU performance experiments. The results emerge that kClusterHub is a streamlined, efficient and user-friendly AutoML-inspired tool for cluster analysis.

Details

Title
kClusterHub: An AutoML-Driven Tool for Effortless Partition-Based Clustering over Varied Data Types
Author
Gratsos, Konstantinos 1 ; Ougiaroglou, Stefanos 1   VIAFID ORCID Logo  ; Margaris, Dionisis 2   VIAFID ORCID Logo 

 Department of Information and Electronic Engineering, School of Engineering, International Hellenic University, Sindos, 57400 Thessaloniki, Greece; [email protected] (K.G.); [email protected] (S.O.) 
 Department of Digital Systems, School of Economics and Technology, University of the Peloponnese, 23100 Sparta, Greece 
First page
341
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
19995903
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2882490080
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.