Full text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Octahedral chiral-at-metal Ir(III) complexes exhibit excellent structural stability and stereoselectivity in asymmetric synthesis. Selectively oxidative dehydrogenation of amino acids could be achieved by exploiting such complexes as chiral templates. The obtaining stable imine complexes can then be utilized in nucleophilic additions to generate corresponding chiral amine compounds. In this study, a conveniently synthesized [Λ-Ir(ppy)2(MeCN)2](PF6) chiral complex (ppy is 2-phenylpyridine) was utilized as a chiral template. A series of chiral amino acid complexes Λ-[Ir(ppy)2(D/L-AA)] (AA is amino acid) were prepared in high yield and optical purity. The above amino acid complexes were then oxidized to their corresponding imino acid complexes Λ-[Ir(ppy)2(AA-2H)] under visible light. All these complexes exhibited high selectivity during the dehydrogenation process without the formation of C-N bond coupling byproducts. The photooxidative dehydrogenation rates of these complexes were studied, which show that D-configured amino acids exhibited faster dehydrogenation rates when using the Λ-configured complex as a chiral template and the substitution of electron-donating or bulky groups in the N-α position of the amino acid decreased their dehydrogenation rates. The crystal structures of Λ-Ir(ppy)2(D-Thr) (Thr is threonine) and its dehydrogenated complex Λ-Ir(ppy)2(Thr-2H) indicate the process of photooxidative dehydrogenation and the configuration stability of metal center throughout the process.

Details

Title
Photooxidative Dehydrogenation of Chiral Ir (III) Amino Acid Complexes Based on [Λ-Ir(ppy)2(MeCN)2](PF6)
Author
Yao, Suyang 1 ; Pu, Yanxi 1 ; Ren, Lulu 1 ; Cao, Manli 1 ; Ye, Baohui 2 

 School of Chemistry and Materials Science, Guangdong University of Education, Guangzhou 510303, China; [email protected] (S.Y.); [email protected] (Y.P.); [email protected] (L.R.) 
 MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China; [email protected] 
First page
380
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
23046740
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2882586061
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.