Full text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The increasing concerns over the environment and the growing demand for sustainable water treatment technologies have sparked substantial interest in the field of photocatalytic dye removal. Polyoxometalates (POMs), known for their intricate metal–oxygen anion clusters, have received considerable attention due to their versatile structures, compositions, and efficient facilitation of photo-induced electron transfers. This paper provides an overview of the ongoing research progress in the realm of photocatalytic dye degradation utilizing POMs and their derivatives. The details encompass the compositions of catalysts, catalytic efficacy, and light absorption propensities, and the photocatalytic mechanisms inherent to POM-based materials for dye degradation are exhaustively expounded upon. This review not only contributes to a better understanding of the potential of POM-based materials in photocatalytic dye degradation, but also presents the advancements and future prospects in this domain of environmental remediation.

Details

Title
Advances in Polyoxometalates as Electron Mediators for Photocatalytic Dye Degradation
Author
Li, Ruyue; Wang, Yaqi; Zeng, Fei; Si, Cuiqing; Zhang, Dan; Xu, Wenbiao; Shi, Junyou
First page
15244
Publication year
2023
Publication date
2023
Publisher
MDPI AG
ISSN
16616596
e-ISSN
14220067
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2882596045
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.