Full Text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Structural health monitoring (SHM) has been extensively utilized in civil infrastructures for several decades. The status of civil constructions is monitored in real time using a wide variety of sensors; however, determining the true state of a structure can be difficult due to the presence of abnormalities in the acquired data. Extreme weather, faulty sensors, and structural damage are common causes of these abnormalities. For civil structure monitoring to be successful, abnormalities must be detected quickly. In addition, one form of abnormality generally predominates the SHM data, which might be a problem for civil infrastructure data. The current state of anomaly detection is severely hampered by this imbalance. Even cutting-edge damage diagnostic methods are useless without proper data-cleansing processes. In order to solve this problem, this study suggests a hyper-parameter-tuned convolutional neural network (CNN) for multiclass unbalanced anomaly detection. A multiclass time series of anomaly data from a real-world cable-stayed bridge is used to test the 1D CNN model, and the dataset is balanced by supplementing the data as necessary. An overall accuracy of 97.6% was achieved by balancing the database using data augmentation to enlarge the dataset, as shown in the research.

Details

Title
Data Anomaly Detection for Structural Health Monitoring Based on a Convolutional Neural Network
Author
Soon-Young, Kim 1 ; Mukhiddinov, Mukhriddin 2   VIAFID ORCID Logo 

 Department of Physical Education, Gachon University, Seongnam 13120, Republic of Korea; [email protected] 
 Department of Communication and Digital Technologies, University of Management and Future Technologies, Tashkent 100208, Uzbekistan 
First page
8525
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
14248220
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2882822042
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.