Full text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Sustained-release materials are increasingly being used in the delivery of oxidants for in situ chemical oxidation (ISCO) for groundwater remediation. Successful implementation of sustained-release materials depends on a clear understanding of the mechanism and kinetics of sustained release. In this research, a columnar sustained-release material (PS@PW) was prepared with paraffin wax and sodium persulfate (PS), and column experiments were performed to investigate the impacts of the PS@PW diameter and PS/PW mass ratio on PS release. The results demonstrated that a reduction in diameter led to an increase in both the rate and proportion of PS release, as well as a diminished lifespan of release. The release process followed the second-order kinetics, and the release rate constant was positively correlated with the PS@PW diameter. A matrix boundary diffusion model was utilized to determine the PS@PW diffusion coefficient of the PS release process, and the release lifespan of a material with a length of 500 mm and a diameter of 80 mm was predicted to be more than 280 days. In general, this research provided a better understanding of the release characteristics and kinetics of persulfate from a sustained-release system and could lead to the development of columnar PS@PW as a practical oxidant for in situ chemical oxidation of contaminated aquifers.

Details

Title
Dynamic Release Characteristics and Kinetics of a Persulfate Sustained-Release Material
Author
Zhu, Xueqiang 1   VIAFID ORCID Logo  ; Ji, Hanghang 1 ; Hua, Gang 1 ; Zhou, Lai 1 

 Engineering Research Center of Mine Ecological Restoration, Ministry of Education, Xuzhou 221116, China; [email protected] (X.Z.); [email protected] (H.J.); [email protected] (G.H.); School of Environment and Spatial Informatics, China University of Mining and Technology, Xuzhou 221116, China 
First page
829
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
23056304
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2882847920
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.