It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Krylov complexity measures the spread of the wavefunction in the Krylov basis, which is constructed using the Hamiltonian and an initial state. We investigate the evolution of the maximally entangled state in the Krylov basis for both chaotic and non-chaotic systems. For this purpose, we derive an Ehrenfest theorem for the Krylov complexity, which reveals its close relation to the spectrum. Our findings suggest that neither the linear growth nor the saturation of Krylov complexity is necessarily associated with chaos. However, for chaotic systems, we observe a universal rise-slope-ramp-plateau behavior in the transition probability from the initial state to one of the Krylov basis states. Moreover, a long ramp in the transition probability is a signal for spectral rigidity, characterizing quantum chaos. Also, this ramp is directly responsible for the late-time peak of Krylov complexity observed in the literature. On the other hand, for non-chaotic systems, this long ramp is absent. Therefore, our results help to clarify which features of the wave function time evolution in Krylov space characterize chaos. We exemplify this by considering the Sachdev-Ye-Kitaev model with two-body or four-body interactions.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details

1 Julius-Maximilians-Universität Würzburg, Institute for Theoretical Physics and Astrophysics and Würzburg-Dresden Cluster of Excellence ct.qmat, Würzburg, Germany (GRID:grid.8379.5) (ISNI:0000 0001 1958 8658)
2 Tulane University, Department of Physics and Engineering Physics, New Orleans, USA (GRID:grid.265219.b) (ISNI:0000 0001 2217 8588)