It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Lichens are of great ecological importance but mechanisms regulating lichen symbiosis are not clear. Umbilicaria muhlenbergii is a lichen-forming fungus amenable to molecular manipulations and dimorphic. Here, we established conditions conducive to symbiotic interactions and lichen differentiation and showed the importance of UMP1 MAP kinase in lichen development. In the initial biofilm-like symbiotic complexes, algal cells were interwoven with pseudohyphae covered with extracellular matrix. After longer incubation, fungal-algal complexes further differentiated into primitive lichen thalli with a melanized cortex-like and pseudoparenchyma-like tissues containing photoactive algal cells. Mutants deleted of UMP1 were blocked in pseudohyphal growth and development of biofilm-like complexes and primitive lichens. Invasion of dividing mother cells that contributes to algal layer organization in lichens was not observed in the ump1 mutant. Overall, these results showed regulatory roles of UMP1 in symbiotic interactions and lichen development and suitability of U. muhlenbergii as a model for studying lichen symbiosis.
The mechanisms regulating fungal-algal interactions during the formation of lichen symbioses are not clear. Here, Wang et al. establish conditions conducive to symbiotic interactions and lichen differentiation using a fungus amenable to genetic manipulation, showing the importance of a MAP kinase in lichen development.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details






1 Chinese Academy of Sciences, State Key Laboratory of Mycology, Institute of Microbiology, Beijing, China (GRID:grid.9227.e) (ISNI:0000000119573309); Purdue University, Dept. of Botany and Plant Pathology, West Lafayette, USA (GRID:grid.169077.e) (ISNI:0000 0004 1937 2197)
2 Chinese Academy of Sciences, State Key Laboratory of Mycology, Institute of Microbiology, Beijing, China (GRID:grid.9227.e) (ISNI:0000000119573309)
3 Purdue University, Dept. of Botany and Plant Pathology, West Lafayette, USA (GRID:grid.169077.e) (ISNI:0000 0004 1937 2197)