Abstract

The application of the virtual synchronous generator (VSG) control technology to engage the inertia response of renewable energy generation systems is an effective means of coping with the problem of weak inertia in power systems. To deal with the problem of small-signal stability in the weak inertia power system, this paper studies how the strength of virtual inertia and damping affect the small-signal stability, and proposes an optimal allocation strategy of virtual inertia and damping for improving the small-signal stability. The optimal allocation model of virtual inertia is constructed to minimize the energy imbalance of the system under small-signal by selecting the virtual inertia and damping as optimization variables. Regarding the aforementioned model, the evolutionary algorithm is used to obtain the optimal allocation of virtual inertia and damping. Simulations on a virtual synchronized microgrid system show the effectiveness of the proposed strategy in improving small-signal stability.

Details

Title
Optimal Allocation Strategy of Virtual Inertia and Damping for Improving the Small-signal Stability
Author
Liu, Mosi 1 ; Sun, Zhiyuan 1 ; Zheng, Kun 1 ; Li, Mingpo 1 

 Electric Power Research Institute of Guangxi Power Grid Co., Ltd., Guangxi Power Grid Co., Ltd. , Nanning , China 
First page
012036
Publication year
2023
Publication date
Oct 2023
Publisher
IOP Publishing
ISSN
17426588
e-ISSN
17426596
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2886651394
Copyright
Published under licence by IOP Publishing Ltd. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.