Full text

Turn on search term navigation

© 2023. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

As an important branch in the field of affective computing, emotion recognition based on electroencephalography (EEG) faces a long-standing challenge due to individual diversities. To conquer this challenge, domain adaptation (DA) or domain generalization (i.e., DA without target domain in the training stage) techniques have been introduced into EEG-based emotion recognition to eliminate the distribution discrepancy between different subjects. The preceding DA or domain generalization (DG) methods mainly focus on aligning the global distribution shift between source and target domains, yet without considering the correlations between the subdomains within the source domain and the target domain of interest. Since the ignorance of the fine-grained distribution information in the source may still bound the DG expectation on EEG datasets with multimodal structures, multiple patches (or subdomains) should be reconstructed from the source domain, on which multi-classifiers could be learned collaboratively. It is expected that accurately aligning relevant subdomains by excavating multiple distribution patterns within the source domain could further boost the learning performance of DG/DA. Therefore, we explore to propose in this work a novel DG method for EEG-based emotion recognition, i.e., Local Domain Generalization with lowrank constraint (LDG). Specifically, the source domain is firstly partitioned into multiple local domains, each of which contains only one positive sample and its positive neighbors and 2 k negative neighbors. Multiple subject-invariant classifiers on different subdomains are then co-learned in a unified framework by minimizing local regression loss with low-rank regularization for considering the shared knowledge among local domains. In the inference stage, the learned local classifiers are discriminatively selected according to their importance of adaptation. Extensive experiments are conducted on two benchmark databases (DEAP and SEED) under two crossvalidation evaluation protocols, i.e., cross-subject within-dataset and cross-dataset within-session. The experimental results under the five-fold cross-validation demonstrate the superiority of the proposed compared with several state-of-the-arts.

Details

Title
Local domain generalization with low-rank constraint for EEG-based emotion recognition
Author
Tao, Jianwen; Dan, Yufang; Zhou, Di
Section
METHODS article
Publication year
2023
Publication date
Nov 7, 2023
Publisher
Frontiers Research Foundation
ISSN
16624548
e-ISSN
1662453X
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2886737358
Copyright
© 2023. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.