Full text

Turn on search term navigation

© 2023 Al-Khayri et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, reproduction and adaptation in any medium and for any purpose provided that it is properly attributed. For attribution, the original author(s), title, publication source (PeerJ) and either DOI or URL of the article must be cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Durum and bread wheat are well adapted to the Mediterranean Basin. Twenty-three genotypes of each species were grown to evaluate the intra- and inter-genetic diversity based on omega (ω), gamma (γ) and alpha (α)-gliadin profiles. To achieve this purpose, the endosperm storage proteins (both gliadins and glutenins) were extracted from wheat grains and electrophoresed on sodium dodecyl sulfate (SDS)–polyacrylamide gels. The results of SDS-Polyacrylamide Gel Electrophoresis (SDS-PAGE) revealed nine polymorphic loci out of 16 loci with durum wheat genotypes and nine polymorphic loci out of 18 loci with bead wheat genotypes. The polymorphisms revealed by the SDS-PAGE were 56% and 50% in durum and bread wheat genotypes, respectively. Using the cluster analysis, the durum wheat genotypes were clustered into five groups, while the bread wheat genotypes were grouped into six clusters using un-weighed pair group mean analyses based on ω, γ, and α-gliadins profiles. The 46 durum and bread wheat genotypes were grouped into seven clusters based on the combined ω, γ, and α-gliadins profiles revealed by the SDS-PAGE. The in silico analysis determined the intra-genetic diversity between bread and durum wheat based on the sequences of ω, γ, and α-gliadins. The alignment of ω-gliadin revealed the highest polymorphism (52.1%) between bread and durum wheat, meanwhile, the alignment of γ and α-gliadins revealed very low polymorphism 6.6% and 15.4%, respectively. According to computational studies, all gliadins contain a lot of glutamine and proline residues. The analysis revealed that the bread wheat possessed ω and γ -gliadins with a lower content of proline and a higher content of glutamine than durum wheat. In contrast, durum wheat possessed α-gliadin with a lower content of proline and a higher content of glutamine than bread wheat. In conclusion, the SDS-PAGE, in silico and computational analyses are effective tools to determine the intra- and inter-genetic diversity in tetraploid and hexaploid wheat genotypes based on ω, γ, and α-gliadins profiles.

Details

Title
Assessment of intra- and inter-genetic diversity in tetraploid and hexaploid wheat genotypes based on omega, gamma and alpha-gliadin profiles
Author
Al-Khayri, Jameel M; Alwutayd, Khairiah M; Safhi, Fatmah A; Alqahtani, Mesfer M; Alshegaihi, Rana M; Diaa Abd El-Moneim; Jain, Shri Mohan; Eldomiaty, Ahmed S; Alshamrani, Rahma; Amani Omar Abuzaid; Hassanin, Abdallah A
Publication year
2023
Publication date
Nov 7, 2023
Publisher
PeerJ, Inc.
e-ISSN
21678359
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2886739844
Copyright
© 2023 Al-Khayri et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, reproduction and adaptation in any medium and for any purpose provided that it is properly attributed. For attribution, the original author(s), title, publication source (PeerJ) and either DOI or URL of the article must be cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.