Full text

Turn on search term navigation

© 2023 Mateos Guerrero et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, reproduction and adaptation in any medium and for any purpose provided that it is properly attributed. For attribution, the original author(s), title, publication source (PeerJ) and either DOI or URL of the article must be cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The prawn Macrobrachium tenellum shows aquaculture potential due to its well-defined reproductive cycle linked to female nutritional requirements. Significant changes occur in egg composition during the 16 to 17-day embryo development. Understanding the ontogenic proteins is crucial for developmental insights and controlled reproduction. We employed free-label quantitative proteomics to analyze egg peptides at the initial and final stages of wild females. Using the emPAI protocol and Proteome Discoverer 2.0, we identified 89 differentially expressed proteins in M. tenellum eggs. Of these, 27 were exclusive to early-stage development and three to late-stage. Abundant proteins included Vitellogenin, glyceraldehyde-3-phosphate dehydrogenase, histone 4, beta-actin, and hemocyanin. Gene Ontology analysis revealed 518 terms across molecular functions, biological processes, and cellular components using the GoRetriever tool of AgBase and the CateGOrizer tool of the Animal Genome Research Program. Carbohydrate metabolism was significant in early-stage development, with glyceraldehyde-3-phosphate dehydrogenase being the second most abundant protein. Proteins involved in ATP synthesis and cytoplasmic proteins associated with catalytic and binding activities related to primary metabolism were also detected. Our study elucidates the role of Vitellogenin in lipid transport activity and its potential involvement in the juvenile hormone feedback pathway. This pathway includes farnesoic acid O-methyltransferase and juvenile hormone epoxide oxidase, regulating protein biosynthesis, molt cycles (including chitinase activity), and potentially influencing controlled reproduction. Our proteomic analysis provides insights into the molecular mechanisms driving Ontogenic development in Macrobrachium tenellum, with implications for controlled reproduction strategies and advancements in aquaculture practices.

Details

Title
Molecular signature of the ontogenic development of the prawn Macrobrachium tenellum
Author
Dulce Mateos Guerrero; Martínez-Cruz, Margarito; Pérez-Campos, Eduardo; García-Guerrero, Marcelo; de los Santos-Romero, Rodolfo; Solórzano-Mata, Carlos; Sánchez-Salgado, José Luís; Mohamed Ali Pereyra Morales; Lugo, Agustin; Torres-Rivera, Anayetzin; Alpuche, Juan
Publication year
2023
Publication date
Nov 7, 2023
Publisher
PeerJ, Inc.
e-ISSN
21678359
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2886741709
Copyright
© 2023 Mateos Guerrero et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, reproduction and adaptation in any medium and for any purpose provided that it is properly attributed. For attribution, the original author(s), title, publication source (PeerJ) and either DOI or URL of the article must be cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.