Abstract

This work describes a new wind tunnel hybrid experiment investigating the aerodynamics and the global response of a 15 MW floating wind turbine. The floater motion is realized with a 6-degrees-of-freedom robotic platform controlled with a hardware-in-the-loop system, in which aerodynamic forces developed by the turbine model are the input of a numerical simulation of the floater dynamics, hydrodynamic excitation, and mooring. It is shown that accuracy of the aerodynamic force feedback from the wind turbine is critical to reproduce the floating wind turbine motion, and measurement of aerodynamic loads is more uncertain in case of pitch motion that movement in the other directions. Free decay tests show that damping of platform surge, pitch, and yaw modes is increased with wind and operating wind turbine compared to the no wind case. The effect of aerodynamic loads on the platform response with stochastic waves is small in the wave frequency range, whereas response of the surge mode is increased with wind.

Details

Title
Wind tunnel hardware-in-the-loop experiments about the global response of a 15 MW floating wind turbine
Author
Fontanella, A 1 ; Facchinetti, A 1 ; Belloli, M 1 

 Mechanical Engineering Department, Politecnico di Milano , Milano, Via La Masa 1, 20156 , Italy 
First page
012059
Publication year
2023
Publication date
Oct 2023
Publisher
IOP Publishing
ISSN
17426588
e-ISSN
17426596
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2887036791
Copyright
Published under licence by IOP Publishing Ltd. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.