It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
This work describes a new wind tunnel hybrid experiment investigating the aerodynamics and the global response of a 15 MW floating wind turbine. The floater motion is realized with a 6-degrees-of-freedom robotic platform controlled with a hardware-in-the-loop system, in which aerodynamic forces developed by the turbine model are the input of a numerical simulation of the floater dynamics, hydrodynamic excitation, and mooring. It is shown that accuracy of the aerodynamic force feedback from the wind turbine is critical to reproduce the floating wind turbine motion, and measurement of aerodynamic loads is more uncertain in case of pitch motion that movement in the other directions. Free decay tests show that damping of platform surge, pitch, and yaw modes is increased with wind and operating wind turbine compared to the no wind case. The effect of aerodynamic loads on the platform response with stochastic waves is small in the wave frequency range, whereas response of the surge mode is increased with wind.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 Mechanical Engineering Department, Politecnico di Milano , Milano, Via La Masa 1, 20156 , Italy