Abstract

The canonical studies on Mie scattering unravel strong electric/magnetic optical responses in nanostructures, laying foundation for emerging meta-photonic applications. Conventionally, the morphology-sensitive resonances hinge on the normalized frequency, i.e. particle size over wavelength, but non-paraxial incidence symmetry is overlooked. Here, through confocal reflection microscopy with a tight focus scanning over silicon nanostructures, the scattering point spread functions unveil distinctive spatial patterns featuring that linear scattering efficiency is maximal when the focus is misaligned. The underlying physical mechanism is the excitation of higher-order multipolar modes, not accessible by plane wave irradiation, via displacement resonance, which showcases a significant reduction of nonlinear response threshold, sign flip in all-optical switching, and spatial resolution enhancement. Our result fundamentally extends the century-old light scattering theory, and suggests new dimensions to tailor Mie resonances.

Mie resonances are typically manipulated through varying nanostructure shape/size. Here, authors found that Gaussian beam displacement excites higher-order multipolar modes, not accessible by plane wave, featuring maximal linear and nonlinear scattering efficiency when the focus is misaligned.

Details

Title
Multipole engineering by displacement resonance: a new degree of freedom of Mie resonance
Author
Tang, Yu-Lung 1   VIAFID ORCID Logo  ; Yen, Te-Hsin 1 ; Nishida, Kentaro 1 ; Li, Chien-Hsuan 1 ; Chen, Yu-Chieh 1 ; Zhang, Tianyue 2   VIAFID ORCID Logo  ; Pai, Chi-Kang 1   VIAFID ORCID Logo  ; Chen, Kuo-Ping 3 ; Li, Xiangping 2   VIAFID ORCID Logo  ; Takahara, Junichi 4   VIAFID ORCID Logo  ; Chu, Shi-Wei 5   VIAFID ORCID Logo 

 National Taiwan University, Department of Physics, Taipei, Taiwan (GRID:grid.19188.39) (ISNI:0000 0004 0546 0241) 
 Jinan University, Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Institute of Photonics Technology, Guangzhou, China (GRID:grid.258164.c) (ISNI:0000 0004 1790 3548) 
 National Yang Ming Chiao Tung University, Institute of Imaging and Biomedical Photonics, Tainan, Taiwan (GRID:grid.260539.b) (ISNI:0000 0001 2059 7017); National Tsing Hua University, Institute of Photonics Technologies, Hsinchu, Taiwan (GRID:grid.38348.34) (ISNI:0000 0004 0532 0580) 
 Osaka University, Graduate School of Engineering, Osaka, Japan (GRID:grid.136593.b) (ISNI:0000 0004 0373 3971); Osaka University, Photonics Center, Graduate School of Engineering, Osaka, Japan (GRID:grid.136593.b) (ISNI:0000 0004 0373 3971) 
 National Taiwan University, Department of Physics, Taipei, Taiwan (GRID:grid.19188.39) (ISNI:0000 0004 0546 0241); National Taiwan University, Molecular Imaging Center, Taipei, Taiwan (GRID:grid.19188.39) (ISNI:0000 0004 0546 0241); National Tsing Hua University, Brain Research Center, Hsinchu, Taiwan (GRID:grid.38348.34) (ISNI:0000 0004 0532 0580) 
Pages
7213
Publication year
2023
Publication date
2023
Publisher
Nature Publishing Group
e-ISSN
20411723
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2887157882
Copyright
© The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.