It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Well curated extensive datasets have helped spur intense molecular machine learning (ML) method development activities over the last few years, encouraging nonchemists to be part of the effort as well. QM9 dataset is one of the benchmark databases for small molecules with molecular energies based on B3LYP functional. G4MP2 based energies of these molecules were published later. To enable a wide variety of ML tasks like transfer learning, delta learning, multitask learning, etc. with QM9 molecules, in this article, we introduce a new dataset with QM9 molecule energies estimated with 76 different DFT functionals and three different basis sets (228 energy numbers for each molecule). We additionally enumerated all possible A ↔ B monomolecular interconversions within the QM9 dataset and provided the reaction energies based on these 76 functionals, and basis sets. Lastly, we also provide the bond changes for all the 162 million reactions with the dataset to enable structure- and bond-based reaction energy prediction tools based on ML.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer