Full text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Traditional laboratory methods for estimating soil compaction parameters, such as the Proctor test, have been recognized as time-consuming and labor-intensive. Given the increasing need for the rapid and accurate estimation of soil compaction parameters for a range of geotechnical applications, the application of machine learning models offers a promising alternative. This study focuses on employing the multivariate adaptive regression splines (MARS) model algorithm, a machine learning method that presents a significant advantage over other models through generating human-understandable piecewise linear equations. The MARS model was trained and tested on a comprehensive dataset to predict essential soil compaction parameters, including optimum water content (wopt) and maximum dry density (ρdmax). The performance of the model was evaluated using coefficient of determination (R2) and root mean square error (RMSE) values. Remarkably, the MARS models showed excellent predictive ability with high R2 and low RMSE, MAE, and relative error values, indicating its robustness and reliability in predicting soil compaction parameters. Through rigorous five-fold cross-validation, the model’s predictions for wopt returned an RMSE of 1.948%, an R2 of 0.893, and an MAE of 1.498%. For ρdmax, the results showcased an RMSE of 0.064 Mg/m3, an R2 of 0.899, and an MAE of 0.050 Mg/m3. When evaluated on unseen data, the model’s performance for wopt prediction was marked with an MAE of 1.276%, RMSE of 1.577%, and R2 of 0.948. Similarly, for ρdmax, the predictions were characterized by an MAE of 0.047 Mg/m3, RMSE of 0.062 Mg/m3, and R2 of 0.919. The results also indicated that the MARS model outperformed previously developed machine learning models, suggesting its potential to replace conventional testing methods. The successful application of the MARS model could revolutionize the geotechnical field through providing quick and reliable predictions of soil compaction parameters, improving efficiency for construction projects. Lastly, a variable importance analysis was performed on the model to assess how input variables affect its outcomes. It was found that fine content (Cf) and plastic limit (PL) have the greatest impact on compaction parameters.

Details

Title
Utilizing Multivariate Adaptive Regression Splines (MARS) for Precise Estimation of Soil Compaction Parameters
Author
Musaab Sabah Abed 1   VIAFID ORCID Logo  ; Kadhim, Firas Jawad 1 ; Almusawi, Jwad K 1   VIAFID ORCID Logo  ; Hamza Imran 2   VIAFID ORCID Logo  ; Luís Filipe Almeida Bernardo 3   VIAFID ORCID Logo  ; Henedy, Sadiq N 4 

 Department of Civil Engineering, Faculty of Engineering, University of Misan, Amarah 62001, Iraq; [email protected] (M.S.A.); [email protected] (F.J.K.); [email protected] (J.K.A.) 
 Department of Environmental Science, College of Energy and Environmental Science, Alkarkh University of Science, Baghdad 10081, Iraq; [email protected] 
 Department of Civil Engineering and Architecture, GeoBioTec-UBI, University of Beira Interior, 6201-001 Covilhã, Portugal 
 Department of Civil Engineering, Mazaya University College, Nasiriyah City 64001, Iraq; [email protected] 
First page
11634
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
20763417
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2888117178
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.